Course code:

Plan position:

sition:

A. INFORMATION ABOUT THE COURSE

.....

B. Basic information

Name of course	Analytical Chemistry
Field of studies	Chemical Technology
Level of studies	First degree
Profile of studies	General academic
Form of studies	Stationary
Specialty	 Chemical process technology Bioengineering Chemistry and technology of cosmetics
Unit responsible for the field of studies	Faculty of Chemical Technology and Engineering/Division of General and Inorganic Chemistry
Name and academic degree of teacher(s)	Przemysław Kosobucki, Ph.D., D.Sc., Associate Professor; Małgorzata Kaczorowska, Ph.D., D.Sc., Katarzyna Jurek, Ph.D.
Introductory courses	Background of chemistry and physics from secondary school and basic knowledge of algebra
Introductory requirements	Course of General Chemistry

C. Semester/week schedule of classes

Semester	Lectures (W)	Auditorium classes	Laboratory classes	Project classes	Seminar	Field classes	Number of ECTS points
		(Ć)	(L)	(P)	(S)	(T)	
winter	15	30	60				10

2. LEARNING OUTCOME

No.	Learning outcomes description	The reference to the learning outcomes of specific field of study	The reference to the learning outcomes for the area		
	KNOWLEDGE				
W1	Has a structured, theoretically underpinned knowledge of general understanding of analytical chemistry.	K_W03	P6S_WG		
W2	Has knowledge of techniques and methods for the characterization and identification of chemical products.	K_W11	P6S_WG		
	SKILLS				
U1	Works individually and as part of a team.	K_U02	P6S_UO P6S_UK		
U2	Selects analytical methods for the qualitative and quantitative determination of chemical compounds and evaluation of their physico-chemical properties.	K_U11	P6S_UW		
SOCIAL COMPETENCES					

K1	Is aware of the responsibility for jointly tasks, which are	K_K04	P6S_KK
	related to teamwork.		P6S_KO

3. TEACHING METHODS

A. Traditional methods used

Multimedia lecture, laboratory experiments and calculations (classes) performed by students under supervision of academic staff.

4. METHODS OF EXAMINATION

Written exam from lectures, written tests from laboratories and classes.

5. SCOPE

-						
Lectures	Process of quantitative chemical analysis. Errors and statistical calculations of					
	analytical results. Basic chemical laws used in quantitative analysis. Introduction					
	to gravimetric determinations. Fundamentals of quantitative analysis in solution.					
	Titrimetric analysis: acid-base, precipitations, redox, complexometric - EDTA. Titration analyses in applications. Theory of indicators: acid – base, redox, complexometric and precipitations. Classification of the instrumental methods.					
	Introduction to spectrophotometry, spectrophotometers, UV - Vis					
	spectrophotometry, IR spectroscopy in analytical applications, atomic absorption					
	and emission spectroscopy. NMR. Fundamentals of electrochemical methods:					
	potentiometry, conductometry. Introduction to chromatographic and					
	electromigration techniques.					
Classes	Calculation related to the preparation of solutions from a solid weight sample or					
	by dilution. Calculation rules related to the standardization of solutions.					
	Calculation related with determination of components by means of: volumetric,					
	alkacymetric, precipitation and redoximetry. Methods of calculations necessary for					
	instrumental determinations.					
Laboratories	Health and safety rules and good laboratory practices. Systematics of analytical					
	methods. Filtration and washing. Roasting and drying. Weighing determination of					
	selected ions. Volume analysis: alkacymetry, complexometry, precipitation					
	analysis and redoximetry. Standard solutions (preparation standardization),					
	selected markings in the field of volumetric analysis. Water analysis and artificial					
	fertilizers. Physicochemical methods in quantitative analysis, with particular					
	emphasis on potentiometry, conductometry, spectrophotometry and					
	electrogravimetry.					

6. METHODS OF VERIFICATION OF LEARNING OUTCOMES

LEARNING	Form of assessment					
OUTCOME	Oral	Written	Colloquium	Project	Report	Credit for
OUTCOME	examination	exam	Conoquium			experiments
W1		Х				
W2		Х				Х
U1						Х
U2			X			Х
K1			Х			Х

7. LITERATURE

Basic literature	1. Harvey D., 2000. Modern Analytical Chemistry. MC Graw Hill.			
Supplementary	1. Harris D.C., 2010. Quantitative Chemical Analysis, W.H. Freeman and Co. N.Y. 8th			
literature	Ed.			
	2. Fifield F.W., Kealey D., 2000. Principles and Practice of Analytical Chemistry,			
	Blackwell Science.			
	3. Skoog D.A., Holler F.J., Holler F.J., Crouch S.R., 2014. Fundamentals of Analytical			
	Chemistry, 9th Edition, Belmont.			
	4. Materials prepared by lecturer.			

8. TOTAL STUDENT WORKLOAD REQUIRED TO ACHIEVE EXPECTED LEARNING OUTCOMES EXPRESSED IN TIME AND ECTS CREDITS

S	Student workload– number of hours	
Classes conducted under a	Participation in classes indicated in point 1B	105
direct supervision of an academic teacher or other persons responsible for classes	Supervision hours	30
	Preparation for classes	40
Student's own work	Reading assignments	35
	Other (preparation for exams, tests, carrying out a project etc)	40
Total student workload	250	
	10	