Course code:

Plan position:

sition:

A. INFORMATION ABOUT THE COURSE

.....

B. Basic information

Name of course	Chemical engineering
Field of studies	Chemical Technology
Level of studies	First degree
Profile of studies	General academic
Form of studies	Stationary
Specialty	 Chemical process technology Bioengineering Chemistry and technology of cosmetics
Unit responsible for the field of studies	Faculty of Chemical Technology and Engineering / Division of Chemical and Biochemical Engineering
Name and academic degree of teacher(s)	Sylwia Kwiatkowska-Marks, BEng PhD, Justyna Miłek, BEng, PhD, Ilona Trawczyńska, BEng, PhD Sławomir Żak, BEng, PhD
Introductory courses	Physical chemistry
Introductory requirements	No prerequisites

C. Semester/week schedule of classes

Semester	Lectures (W)	Auditorium classes	Laboratory classes	Project classes	Seminar	Field classes	Number of ECTS points
		(Ć)	(L)	(P)	(S)	(T)	
Winter	30 ^E	15	30				8

2. LEARNING OUTCOME

		The reference	The reference
		to the	to the
No	Larring outcomes description	learning	learning
INO.	Learning outcomes description	outcomes of	outcomes for
		specific field	the area
		of study	
	KNOWLEDGE		
W1	The student has knowledge of chemical engineering.	K_W13	P6S_WG
W2	The student knows the basic methods, techniques, tools and	K_W15	P6S_WG
	materials used in solving simple engineering problems		
	related to technology and chemical engineering.		
	SKILLS		
U1	Student uses knowledge to design and implement simple	K_U07	P6S_UW
	chemical processes and unit operations and explains basic		
	phenomena related to important processes in chemical		
	technology and engineering.		
U2	The student is supposed to solve basic engineering	K_U18	P6S_WG
	problems in chemical processing.		

SOCIAL COMPETENCES				
K1	The student understands the need for learning and	K_K01	P6S_KK	
	motivation to develop their competences.			
K2	The student is aware of the responsibility for jointly	K_K04	P6S_KK	
	performed problems to cooperate with other chemists.		P6S_KO	

3. TEACHING METHODS

A. Traditional methods used

Standard lecture with presentation. Laboratory experiments and calculations (classes) performed by students under supervision of academic staff. Outdoor classes - visits of production companies.

B. Distance learning methods used

Synchronous method (classes conducted in a way that ensures direct interaction between the student and the teacher in real time, enabling immediate flow of information, the method can be used only if it is provided for in the study plan for a given cycle of education):

e.g. remote lecture in the form of videoconference, remote discussion, etc.

Asynchronous method used as an auxiliary (a method that does not ensure direct interaction between the student and the teacher in real time, used only as an auxiliary / complementary method):

e.g. online educational videos, online multimedia presentations, etc.

4. METHODS OF EXAMINATION

Written exam from lectures during winter/summer examination session, written tests from laboratories and from classes.

5. SCOPE

Lectures	Flow of fluid. Movement of particles in fluids. Gravitational dust collection.
	Hydraulic Classification. Fluidization. Filtration. Mixing. Heat transfer and its
	application. Introduction to mass transfer. Drying.
Auditorium classes	Solving of engineering problems in unit operations.
Laboratories	Experiments on momentum and heat transfer.

6. METHODS OF VERIFICATION OF LEARNING OUTCOMES

	Form of assessment						
OUTCOME	Oral examination	Written exam	Colloquium	Project	Presentation	Reports	
W1	Х	Х					
W2	Х	Х					
U1			Х		X		
U2			Х		X		
K1					х		
K2					X		

7. LITERATURE

Basic literature	1. McCabe W.L., Smith J.L. Unit operations of chemical engineering. McGraw-Hill's,
	New York, 1985.
	2. Chpey N. P. Handbook of Chemical Engineering Calculations. McGraw – Hill's, New
	York, 2004.
	3. Himmelblau D.M. Basic Principles and Calculations in Chemical. Prentice Hall,
	London, 1982.

	4. Wankat P. C. Separation Process Engineering: Includes Mass Transfer Analysis.
	Prentice Hall, 2016.
Supplementary	1. http://en.wikibooks.org/wiki/Introduction_to_Chemical_Engineering_Processes
literature	2. Perry R.H., Green D.W. Perry's Chemical Engineers' Handbook. Mc Graw - Hill,
	New York, 1997.

8. TOTAL STUDENT WORKLOAD REQUIRED TO ACHIEVE EXPECTED LEARNING OUTCOMES EXPRESSED IN TIME AND ECTS CREDITS

S	Student workload– number of hours	
Classes conducted under a	Participation in classes indicated in point 1B	75
direct supervision of an academic teacher or other persons responsible for classes	Supervision hours	5
	Preparation for classes	40
Student's own work	Reading assignments	40
	Other (preparation for exams, tests, carrying out a project etc)	40
Total student workload	200	
	8	