Course code:

Plan position:

sition:

A. INFORMATION ABOUT THE COURSE

.....

B. Basic information

Name of course	General and Inorganic Chemistry
Field of studies	Chemical Technology
Level of studies	First degree
Profile of studies	General academic
Form of studies	Stationary
Specialty	 Chemical process technology Bioengineering Chemistry and technology of cosmetics
Unit responsible for the field of studies	Faculty of Chemical Technology and Engineering/Division of General and Inorganic Chemistry
Name and academic degree of teacher(s)	Terese Rauckyte-Żak, PhD; Katarzyna Witt, PhD; Mariusz Sulewski, PhD
Introductory courses	Not available
Introductory requirements	Elementary concepts of chemistry such as element symbols, chemical formulas of basic inorganic compounds and writing of chemical reactions

C. Semester/week schedule of classes

Semester	Lectures (W)	Auditorium classes	Laboratory classes	Project classes	Seminar	Field classes	Number of ECTS points
		(Ć)	(L)	(P)	(S)	(T)	
winter	30	15	30				10

2. LEARNING OUTCOME

No.	Learning outcomes description	The reference to the learning outcomes of specific field of study	The reference to the learning outcomes for the area
	KNOWLEDGE		
W1	Has a structured, theoretically underpinned knowledge of general and inorganic chemistry and inorganic qualitative analysis.	K_W03	P6S_WG
	SKILLS		
U1	Be able to characterize different states of matter, distinguish between types of chemical reactions and have the ability to select a reaction for qualitative determination.	K_U09	P6S_UW
U2	Use basic laboratory techniques used in the chemistry laboratory.	K_U10	P6S_UW
U3	Adheres to the health and safety rules associated with chemical laboratory activities.	K_U14	P6S_UW

U4	It implements proper waste management in the laboratory.	K_U15	P6S_UW
U5	Solves simple tasks related to the implementation of	K_U18	P6S_UW
	processes and unit operations in inorganic chemistry.		
	SOCIAL COMPETENCES		
K1	Is aware of the need to observe professional ethics.	K_K03	P6S_KR
K2	Is aware of the responsibility for jointly carried out tasks	K_K04	P6S_KK
	related to teamwork.		P6S_KO
K3	Correctly identifies and resolves dilemmas related to the		P6S_KK
	profession.		

3. TEACHING METHODS

A. Traditional methods used

Multimedia lecture, laboratory experiments performed by students under supervision of academic staff.

4. METHODS OF EXAMINATION

Written examination on lecture topics (2 approaches), 2 written colloquia on laboratories (3 approaches to each) and one written colloquium on classes (3 approaches).

5. SCOPE

-				
Lectures	Kinetics, reaction rates, catalysis and chemical equilibrium, equilibrium constant			
	K, Le Chatelier - Braun's rule. Ionic equilibria in electrolyte solutions, electrolytic			
	dissociation. Acid and base theories (Bronsted, Lewis), pH of solutions,			
	hydrolysis, buffers. Solubility and solubility product (precipitation of precipitates			
	from aqueous solutions). Redox processes. Electrochemistry: Nernst potential,			
	electrodes and cells, voltage series of metals. Crystal structure of solids. Atomic			
	structure, quantum numbers, s-, p- and d-type orbitals, Pauli's prohibition, Hund's			
	rule. Electron configurations of the elements. Periodic table. Electron structure			
	versus atomic properties of the elements (ionisation energy, electronegativity,			
	atomic/ionic radii). Ground and excited states of atoms. Fundamentals of			
	molecular orbital theory. Hybridisation, π and σ bonds. Types of chemical bonds			
	(ionic, covalent (coordination), metallic); bond polarity, dipole molecules,			
	dielectric constant; dispersion forces, van der Waals and hydrogen bonds.			
Classes	Stoichiometry of reactions, stacking and balancing chemical reaction equations.			
	Stoichiometric calculations. Calculation of concentrations of solutions. Equilibria			
	in electrolyte solutions. Persistence of complex compounds and equilibria in their			
	solutions.			
Laboratories	Health and safety in the laboratory, laboratory regulations, laboratory equipment.			
	Kinetics and equilibrium of chemical reactions. Equilibrium in electrolyte			
	solutions, dissociation. Hydrolysis of salts, pH, buffer solutions, indicators.			
	Preparation and study of complex and amphoteric compounds. Equilibrium in the			
	solid-solution system. Equilibrium in redox reactions. Voltage series of metals.			

6. METHODS OF VERIFICATION OF LEARNING OUTCOMES

LEARNING OUTCOME			Form of a	assessment		
	Oral examination	Written exam	Colloquium	Project	Report	Credit for experiments
W1		х	Х			

U1		Х	Х	Х
U2				Х
U3		Х		
U4			Х	Х
U5		Х	Х	
K1				Х
K2				Х
K3				Х

7. LITERATURE

Basic literature	1. Cotton F.A., Wilkinson G., Gaus P.L., 1987. Basic inorganic chemistry (second					
	edition). John Willey & Sons, Inc.					
	2. Cotton F.A., Wilkinson G., 1988. Advanced inorganic chemistry (fifth edition). John					
	Willey & Sons, Inc.					
	3. Gerloch M., Constable E.C., 1994. Transition metal chemistry: the valence shell in					
	d-block chemistry. VCH Weinheim and VCH Publishers, New York.					
	4. Pazdro K.M., Rola-Noworyta A., 2013. Akademicki zbiór zadań z chemii ogólnej					
	(Academic collection of general chemistry exercises).					
	5. Sienko M.J., Plane R.A., 1979. Chemistry: principles and applications. McGraw-					
	Hill Book Company.					
Supplementary	1. Wiseman F.L., 1985. Chemistry in the modern world: concepts and applications.					
literature	McGraw-Hill Book Company.					
	2. Materials prepared by lecturer.					

8. TOTAL STUDENT WORKLOAD REQUIRED TO ACHIEVE EXPECTED LEARNING OUTCOMES EXPRESSED IN TIME AND ECTS CREDITS

S	Student workload– number of hours	
Classes conducted under a Participation in classes indicated in point 1B		75
direct supervision of an academic teacher or other persons responsible for classes	Supervision hours	45
	Preparation for classes	70
Student's own work	Reading assignments	60
	Other (preparation for exams, tests, carrying out a project etc)	40
Total student workload	290	
	10	