Course code:

Plan position:

A. INFORMATION ABOUT THE COURSE

B. Basic information

Name of course	Separation Operations
Field of studies	Chemical Technology
Level of studies	First degree
Profile of studies	General academic
Form of studies	Stationary
Specialty	 Chemical process technology Bioengineering Chemistry and technology of cosmetics
Unit responsible for the field of studies	Faculty of Chemical Technology and Engineering/ Division of Chemical and Biochemical Engineering
Name and academic degree of teacher(s)	Sylwia Kwiatkowska-Marks, BEng PhD, Justyna Miłek, BEng, PhD, Ilona Trawczyńska, BEng, PhD Sławomir Żak, BEng, PhD
Introductory courses	Chemical engineering
Introductory requirements	No requirements

C. Semester/week schedule of classes

Semester	Lectures (W)	Auditorium classes	Laboratory classes	Project classes	Seminar	Field classes	Number of ECTS points
		(Ć)	(L)	(P)	(S)	(T)	
Summer	30			15			5

2. LEARNING OUTCOME

		The reference	The reference		
		to the	to the		
No	Learning outcomes description	learning	learning		
INO.	Learning outcomes description	outcomes of	outcomes for		
		specific field	the area		
		of study			
	KNOWLEDGE				
W1	The student has knowledge in the field of chemical	K_W13	P6S_WG		
	engineering.				
W2	The student knows the basic methods, techniques, tools and	K_W15	P6S_WG		
	materials used in solving simple engineering tasks related				
	to technology and chemical engineering.				
SKILLS					
U1	The student uses knowledge to design and implement	K_U07	P6S_UW		
	simple chemical processes and unit operations. He can				
	explain the basic phenomena related to important processes				
	in chemical technology and engineering.				

U2	The student uses the principles of saving raw materials and	K_U16	P6S_UW
	energy.		
U3	The student solves simple engineering tasks related to the	K_U18	P6S_UW
	implementation of processes and unit operations.		

3. TEACHING METHODS

A. Traditional methods used

Standard lecture with presentation. Laboratory experiments and calculations (classes) performed by students under supervision of academic staff. Outdoor classes - visits of production companies.

B. Distance learning methods used

Synchronous method (classes conducted in a way that ensures direct interaction between the student and the teacher in real time, enabling immediate flow of information, the method can be used only if it is provided for in the study plan for a given cycle of education):

e.g. remote lecture in the form of videoconference, remote discussion, etc.

Asynchronous method used as an auxiliary (a method that does not ensure direct interaction between the student and the teacher in real time, used only as an auxiliary / complementary method):

e.g. online educational videos, online multimedia presentations, etc.

4. METHODS OF EXAMINATION

Written exam from lectures during summer examination session.

5. SCOPE

Lectures	Introduction to separation processes. The evaporators types and equipment (single-			
	effect and multiple-effect evaporators, vapor recompression evaporator).			
	Equilibrium diagrams. Flash, simple batch and continuous distillation. Steam			
	distillation. Total reflux, minimum reflux and tray efficiency. McCabe-Thiele			
	method. Extractive distillation, azeotropic distillation. Calculation of boiling point			
	and dew point. Liquid-liquid extraction and solid-liquid extraction. Absorption.			
	Membrane processes.			
Project	Project of the plate rectifying column.			

6. METHODS OF VERIFICATION OF LEARNING OUTCOMES

LEADNING	Form of assessment					
OUTCOME	Oral examination	Written exam	Colloquium	Project	Presentation	Reports
W1		х				
W2		Х				
U1		Х		Х		
U2				Х		
U3				Х		

7. LITERATURE

Basic literature	1. McCabe W.L., Smith J.L.: Unit operations of chemical engineering. McGraw-Hill's,
	New York, 1985.
	2. Chpey N. P.: Handbook of Chemical Engineering Calculations. McGraw – Hill's,
	New York, 2004.

	3. Himmelblau D.M.: Basic Principles and Calculations in Chemical. Prentice Hall,
	London, 1982.
	4. Wankat P. C.: Separation Process Engineering: Includes Mass Transfer Analysis,
	Prentice Hall, 2016.
	5. Pabby A.K., Rizvi S.H., Sastre A.M.: Handbook of membrane separations chemical,
	pharmaceutical, food, and biotechnological applications. CRC Press. cop. 2015.
Supplementary	1. http://en.wikibooks.org/wiki/Introduction_to_Chemical_Engineering_Processes
literature	2. Perry R.H. Green D.W. Perry's Chemical Engineers' Handbook. Mc Graw - Hill,
	New York. 1997.

8. TOTAL STUDENT WORKLOAD REQUIRED TO ACHIEVE EXPECTED LEARNING OUTCOMES EXPRESSED IN TIME AND ECTS CREDITS

S	Student workload– number of hours	
Classes conducted under a	Participation in classes indicated in point 1C	45
direct supervision of an academic teacher or other persons responsible for classes	Supervision hours	20
	Preparation for classes	20
Student's own work	Reading assignments	20
	Other (preparation for exams, tests, carrying out a project etc)	20
Total student workload		125
	5	