Course code:

Plan position:

ition:

A. INFORMATION ABOUT THE COURSE

.....

B. Basic information

Name of course	Plant genetics and embryology
Field of studies	Biotechnology, Agriculture
Level of studies	First
Profile of studies	Academic
Form of studies	Full time
Specialty	
Unit responsible for the field of studies	Faculty of Agriculture and Biotechnology
Name and academic degree of teacher(s)	Dorota Olszewska, PhD, Aleksandra Niklas-Nowak, PhD
Introductory courses	Basic knowledge of biology.
Introductory requirements	Basic laboratory skills.

C. Semester/week schedule of classes

Semester	Lectures (W)	Auditorium classes	Laboratory classes	Project classes	Seminar	Field classes	Number of ECTS points
		(Ć)	(L)	(P)	(S)	(T)	-
Winter/summer			30				6

2. LEARNING OUTCOME

		The reference	The reference		
No		to the	to the		
	Learning outcomes description	learning	learning		
110.	Learning outcomes description	outcomes of	outcomes for		
		specific field	the area		
		of study			
	KNOWLEDGE				
W1	Has knowledge of inheritance and variability of traits, gene	K_W09	R1A_W05		
	interaction, gene coupling.				
W2	He knows the basic technologies used in traditional plant	K_W19	R1A_W04		
	breeding and in vitro cultures.		R1A_W05		
W3	Student has knowledge of developmental and	K_W1	R1A_W01		
	experimental embryology in the area of its application in				
	the creation of gametic and somatic embryos.				
W4	On successful completion of the course student knows in	K_W19	R1A_W04		
	vivo and in vitro methods of haploid induction applied to		R1A_W05		
	improve cultivated and garden plants.				
SKILLS					
U1	Performs problem and research tasks under the supervision	K_U04	R1A_U04		
	of an academic teacher, correctly interprets the results and				
	draws conclusions.				

U2	He can assess the benefits of using biotechnological methods in the genetic improvement of crops.	K_U19	R1A_U05 R1A_U06
U3	On successful completion of the course student knows how to start and carry out research in the field of polyembryony <i>in vivo</i> , induced androgenesis and gynogenesis in <i>in vitro</i> cultures.	K_U20	R1A_U06 R1A_U07
U4	He uses basic techniques of haploid induction in the process of genetic stabilization of crops, makes embryological preparations.	K_U15	R1A_U06
	SOCIAL COMPETENCES		
K1	Understands the need to learn and develop knowledge, and	K_K01	R1A_K01
	recognizes the need to improve their competences.		R1A_K07
K2	He can work individually and in a team.	K_K02	R1A_K02

3. TEACHING METHODS

A. Traditional methods used ***

Laboratories

B. Distance learning methods used ***

Synchronous method (classes conducted in a way that ensures direct interaction between the student and the teacher in real time, enabling immediate flow of information, the method can be used only if it is provided for in the study plan for a given cycle of education): remote lecture in the form of videoconference, remote discussion.

Asynchronous method used as an auxiliary (a method that does not ensure direct interaction between the student and the teacher in real time, used only as an auxiliary / complementary method): online educational videos, online multimedia presentations.

4. METHODS OF EXAMINATION

Test

5. SCOPE

Lectures						
Laboratories	Mendelian inheritance of traits, multiple alleles, the phenomenon of					
	lethality and pleiotropy, chi-square test, sex-linked traits, gene linkages,					
	chromosome mapping, inheritance and variability of quantitative traits,					
	population genetics.					
	In vitro induced androgenesis – media preparation, sterilization. Genotype					
	differences in androgenic response - selection of plant material on the basis of					
	microspores development. Anthers and microspores culture induction.					
	Polyembryony experiment – frequency in the context of genotype characteristics.					
	Micro- and macrosporogenesis – obserwations using light microscope.					

6. METHODS OF VERIFICATION OF LEARNING OUTCOMES

	Form of assessment					
OUTCOME	Oral examination	Written exam	Colloquium	Project	Presentation	Laboratory classes
W1 - W4		Х			Х	Х
U1 – U4		Х			Х	Х

K1	Х		Х	Х
K2			Х	Х

7. LITERATURE

Basic literature	Winter P.C., Hickey G.I., Fletcher H.L., 2002. Instant Notes in Genetics. BIOS Scientific Publishers Limited Hayes H.K., 2007. Methods of Plant Breeding. Read Books.
Supplementary	Current scientific literature and Internet sources
literature	

8. TOTAL STUDENT WORKLOAD REQUIRED TO ACHIEVE EXPECTED LEARNING OUTCOMES EXPRESSED IN TIME AND ECTS CREDITS

S	Student workload– number of hours	
Classes conducted under a	Participation in classes indicated in point 1B	30
direct supervision of an academic teacher or other persons responsible for classes	Supervision hours	10
	Preparation for classes	30
Student's own work	Reading assignments	40
	Other (preparation for exams, tests, carrying out a project etc)	40
Total student workload	150	
	6	