INFORMATION ABOUT THE COURSE

Course name	Plant physiology and micropropagation
Field of study	Agriculture
Study level	First cycle
Study profile	Academic
Study form	Full time
Speciality	 Agronomy and Agribusiness Plant Protection Environmental Management
Unit running the course	Faculty of Agriculture and Biotechnology, Department of Agricultural Biotechnology
Name(s) and scientific degree (title) of teacher(s)	dr hab. inż. Anna Figas, dr inż. Magdalena Tomaszewska-Sowa
Introductory courses Botany, Organic chemistry	
Prerequisites	Knowledge of basic principles and theories concerning botanical and chemical changes

1. Basic information

2. Semester schedule of classes

Semester	Lectures	Classes	Laboratories	Project classes	Seminars	Field practice	ECTS
Ι	5		10				7

3. EDUCATIONAL OUTCOMES (acc. to National Qualification Framework)

		Reference to	Reference to			
		the major	the area			
No.	Description of the outcomes	specific	specific			
		outcomes of	outcomes of			
		education	education			
	KNOWLEDGE					
W1	Knows the basic physiological processes taking place in the	K_W01	R1A_W01			
	plant. During the course, the student will acquire	K_W09	R1A_W04			
	knowledge of the behavior of plant cells inoculated on	K_W07	R1A_W05			
	nutrients, the possibility of determining their development		R1A_W03			
	path and obtaining specific effects in the form of callus		R1A_W05			
	tissue or regenerates.					
W2	Knows the basic relationships between the organism and	K_W01	R1A_W01			
	the environment around it. After completing the course, the	K_W09	R1A_W04			
	student will be able to use the known research methods to	K_W16	R1A_W05			
	assess the morphogenetic potential of explants isolated					
	from cultivated plants and assess their suitability for					
	conducting biotechnological experiments or the production					
	of micro-seedlings of various plant species in in vitro					
	cultures.					
SKILLS						
U1	Evaluates and explains the factors and mechanisms	K_U12	R1A_U04			
	involved in the regulation of basic physiological processes.	K_U04	R1A_U05			
		K_U01	R1A_U01			

	He has the ability to plan a biotechnological experience using the knowledge of anatomy, botany and biotechnology acquired during his education, as well as knowledge of the use of modern technologies and electronic sources.	K_U20 K_U10	R1A_U06 R1A_U07 R1A_U03				
U2	Recognizes the basic environmental requirements of plants. The student is able to effectively use laboratory equipment and perform all activities related to in vitro cultures.	K_U12 K_U04 K_U01 K_U15 K_U13	R1A_U04 R1A_U05 R1A_U01 R1A_U06				
	SOCIAL COMPETENCES						
K1	Learns to lead selected group work experience. After completing the course, the student is able to use the acquired knowledge and skills effectively in his professional life, showing creativity and responsibility.	K_K10 K_K07	R1A_K02 R1A_K04 R1A_K08 R1A_K05				

4. TEACHING METHODS

multimedia lecture, laboratory exercises, demonstration, discussion

5. METHODS OF EXAMINATION

Laboratory exercises: report of experimental results. 1 tests (written). Test (2 possible corrections possible) must be completed in order to be admitted to the final examination Lecture: written final exam

6. TEACHING CONTENTS

Lectures	Structure and physiology of plant cells. Water management of plants. Transpiration .					
	Guttation. Water uptake and transport. Ecological types of plants. Mineral nutrition.					
	Glycolysis, pentose phosphate pathway, anaerobic digestion, citric acid cycle, respiratory					
	chain, Photosynthesis. Growth regulators (auxins, gibberellins, abscisic acid,					
	brassinosteroids, cytokinins, ethylene, systemin, salicylic acid), growth inhibitors. Plant					
	growth. Plant development Allelopathy. Plant movements (tropisms, nasties, taxa,					
	autonomous movements). Basic plant reactions to abiotic stress factors. Adaptation and					
	acclimatization. Physiology of transport. Plant biotechnology (definitions and introduction,					
	traditional methods of plant breeding, in vitro plant cultures). Plant tissue laboratory and					
	aseptic techniques. In vitro culture conditions – role of light, temperature, photoperiod and					
	growth regulators. Preparation and composition of nutrient media. Mass micropropagation					
	of healthy plants. Culture types. Callus and cell culture.					
Labs	Structure and physiology of plant cells. Water management of plant cells. Water management of					
	plants. Mineral plant economy. Chemical composition of plants. Respiration. Photosynthesis.					
	Plant growth and development. Growth and plant development regulators. Plant movements.					
	Media preparation. Explant isolation and sterilization. Culture initiation. Effects of plant					
	hormones on regeneration and organogenesis. Induction and callus growth of carrot. Vegetative					
	propagation of plants. Rooting and acclimatization of plants.					

	Evaluation form						
Outcome	Oral Exam	Written Exam	Colloquium	Project	Report	Test	
W1		Х			Х	Х	
W2		Х			Х	Х	
U1		X			X		

7. VALIDATION OF LEARNING OUTCOMES

U2	Х		Х	
K1			Х	

8. LITERATURE

Basic	Lincoln Taiz, Eduardo Zeiger (2010): Plant Physiology. Fifth Edition. Sinauer Associates,				
literature	Incorporated, 2010 - 782 pages				
	Campbell, A. Malcolm; Paradise, Christopher J (2016). Plant Physiology. New York,				
	Momentum Press. 2016, eBook Index				
	Pierik R.L.M. 1997. In vitro culture of higher plants, Martinus Nijhoff Publishers,				
	Dordrecht				
	Loyola-Vargas V.M., Ochoa-Alejo N. (Eds) 2012. Plant cell culture protocols. Springer				
Supplementary	Hans Mohr, Peter Schopfer (1995): Plant Physiology. Berlin Springer. 629 pages.				
literature	Current scientific literature and internet sources				

9. STUDENT'S WORK – BALANCE OF HOURS AND ECTS POINTS

Student's performance	Number of hours
Class attendance specified in p. 2	15
Involvement in classes	5
Study of literature	75
Others (preparation for exams, tests, engagement in projects etc.)	70
Student's total performance	10
Number of points proposed by NA	175
Final number of ECTS points (determined by the Educational Board)	7