Course code:

Plan position:

sition:

A. INFORMATION ABOUT THE COURSE

.....

B. Basic information

Name of course	Microbiology
Field of studies	Biotechnology
Level of studies	First cycle
Profile of studies	Academic
Form of studies	Full time
Specialty	Applied biotechnology. Biotechnology in food production.
Unit responsible for the field of studies	Department of Microbiology and Food Technology
Name and academic degree of teacher(s)	Justyna Bauza-Kaszewska, PhD
Introductory courses	-
Introductory requirements	-

C. Semester/week schedule of classes

Semester	Lectures (W)	Auditorium classes	Laboratory classes	Project classes	Seminar	Field classes	Number of ECTS points
		(Ć)	(L)	(P)	(S)	(T)	
V/VI			35				7

2. LEARNING OUTCOME

No.	Learning outcomes description	The reference to the learning outcomes of specific field of study	The reference to the learning outcomes for the area		
	KNOWLEDGE				
W1	A student has a basic knowledge of microbiology	K_W07	P6S_WG		
	application in selected areas of biotechnology; understands				
	the relationships between different natural disciplines				
W2	A student has a knowledge concerning ecologic aspects of microbiology and their engagement between biological processes in the nature	K_W08	P6S_WG		
W3	A student has a knowledge concerning basic techniques research and instruments using in the area of microbiology at the cellular level	K_W09	P6S_WG		
SKILLS					
U1	A student makes observations using a microscope and desribes the objects observed.	K_U13	P6S_UW		
U2	A student demonstrates the ability to obtain and characterise biological material.	K_U17	P6S_UW		

SOCIAL COMPETENCES					
K1	A student is able to cooperate within a group and play	K_K02	P6S_KR		
	different roles in it.				
K2	A student is responsible for their own safety and for other	K_K07	P6S_KR		
	group members.				

3. TEACHING METHODS

A. Traditional methods used ***

Laboratories

B. Distance learning methods used ***

Synchronous method
remote discussion in the form of videoconference, remote presentation of the experiments
Asynchronous method
online multimedia presentations (as a complementary method)

4. METHODS OF EXAMINATION

Final test exam, presentation

5. SCOPE

LaboratoriesSafety rules in microbiological laboratory. Basic information about the microbial structure and systematics. Sterylization and pasteurization techniques. Methods of isolation and cultivation of microorganisms (pour plate, spread plate methods, colony morphology, pure cultures). Determination of morphological and physiological properties of bacteria and actinobacteria and fungi (molds, yeast). Microscopy observation (simple and complex staining). Determination of biochemical and serological properties of microorganisms. Hydrolysis of carbohydrates. Anaerobic digestions: ethanol, lactic acid, butyric, propionic fermentation. Chemism, products, microorganisms. Oxygen fermentations (citric and acetic - chemistry, product, microorganisms). Application in biotechnology processes. The contribution of bacteria in the transformation of organic and mineral nitrogen compounds (proteolysis, ammonification, nitrification, denitrification - substrates, products, microorganisms). N2 fixing by free-living and symbiotic bacteria. Ecological and economic importance of microorganisms – food production, antibiotic production, virulence. Assessment of the impact of chemical and physical agents (pesticides, detergents and heavy metals and preservatives) on microorganisms. Assessment of microbiological quality of food products (milk, raw products, and water: coli titer, total number of bacteria, molds and yeast, determination and characterisation of indicator bacteria: <i>Escherichia coli, Streptococcus faecalis, Salmonella</i> spp.		
structure and systematics. Sterylization and pasteurization techniques. Methods of isolation and cultivation of microorganisms (pour plate, spread plate methods, colony morphology, pure cultures). Determination of morphological and physiological properties of bacteria and actinobacteria and fungi (molds, yeast). Microscopy observation (simple and complex staining). Determination of biochemical and serological properties of microorganisms. Hydrolysis of carbohydrates. Anaerobic digestions: ethanol, lactic acid, butyric, propionic fermentation. Chemism, products, microorganisms. Oxygen fermentations (citric and acetic - chemistry, product, microorganisms). Application in biotechnology processes. The contribution of bacteria in the transformation of organic and mineral nitrogen compounds (proteolysis, ammonification, nitrification, denitrification - substrates, products, microorganisms). N ₂ fixing by free-living and symbiotic bacteria. Ecological and economic importance of microorganisms – food production, antibiotic production, virulence. Assessment of the impact of chemical and physical agents (pesticides, detergents and heavy metals and preservatives) on microorganisms. Assessment of microbiological quality of food products (milk, raw products, and water: coli titer, total number of bacteria, molds and yeast, determination and characterisation of indicator bacteria: <i>Escherichia coli, Streptococcus faecalis, Salmonella</i> spp.	Laboratories	Safety rules in microbiological laboratory. Basic information about the microbial
of isolation and cultivation of microorganisms (pour plate, spread plate methods, colony morphology, pure cultures). Determination of morphological and physiological properties of bacteria and actinobacteria and fungi (molds, yeast). Microscopy observation (simple and complex staining). Determination of biochemical and serological properties of microorganisms. Hydrolysis of carbohydrates. Anaerobic digestions: ethanol, lactic acid, butyric, propionic fermentation. Chemism, products, microorganisms. Oxygen fermentations (citric and acetic - chemistry, product, microorganisms). Application in biotechnology processes. The contribution of bacteria in the transformation of organic and mineral nitrogen compounds (proteolysis, ammonification, nitrification, denitrification - substrates, products, microorganisms). N ₂ fixing by free-living and symbiotic bacteria. Ecological and economic importance of microorganisms – food production, antibiotic production, virulence. Assessment of the impact of chemical and physical agents (pesticides, detergents and heavy metals and preservatives) on microorganisms. Assessment of microbiological quality of food products (milk, raw products, and water: coli titer, total number of bacteria, molds and yeast, determination and characterisation of indicator bacteria: <i>Escherichia coli, Streptococcus faecalis, Salmonella</i> spp.		structure and systematics. Sterylization and pasteurization techniques. Methods
 colony morphology, pure cultures). Determination of morphological and physiological properties of bacteria and actinobacteria and fungi (molds, yeast). Microscopy observation (simple and complex staining). Determination of biochemical and serological properties of microorganisms. Hydrolysis of carbohydrates. Anaerobic digestions: ethanol, lactic acid, butyric, propionic fermentation. Chemism, products, microorganisms. Oxygen fermentations (citric and acetic - chemistry, product, microorganisms). Application in biotechnology processes. The contribution of bacteria in the transformation of organic and mineral nitrogen compounds (proteolysis, ammonification, nitrification, denitrification - substrates, products, microorganisms). N₂ fixing by free-living and symbiotic bacteria. Ecological and economic importance of microorganisms – food production, antibiotic production, virulence. Assessment of the impact of chemical and physical agents (pesticides, detergents and heavy metals and preservatives) on microorganisms. Assessment of microbiological quality of food products (milk, raw products, and water: coli titer, total number of bacteria, molds and yeast, determination and characterisation of indicator bacteria: <i>Escherichia coli, Streptococcus faecalis, Salmonella</i> spp. 		of isolation and cultivation of microorganisms (pour plate, spread plate methods,
physiological properties of bacteria and actinobacteria and fungi (molds, yeast). Microscopy observation (simple and complex staining). Determination of biochemical and serological properties of microorganisms. Hydrolysis of carbohydrates. Anaerobic digestions: ethanol, lactic acid, butyric, propionic fermentation. Chemism, products, microorganisms. Oxygen fermentations (citric and acetic - chemistry, product, microorganisms). Application in biotechnology processes. The contribution of bacteria in the transformation of organic and mineral nitrogen compounds (proteolysis, ammonification, nitrification, denitrification - substrates, products, microorganisms). N ₂ fixing by free-living and symbiotic bacteria. Ecological and economic importance of microorganisms – food production, antibiotic production, virulence. Assessment of the impact of chemical and physical agents (pesticides, detergents and heavy metals and preservatives) on microorganisms. Assessment of microbiological quality of food products (milk, raw products, and water: coli titer, total number of bacteria, molds and yeast, determination and characterisation of indicator bacteria: <i>Escherichia coli, Streptococcus faecalis, Salmonella</i> spp.		colony morphology, pure cultures). Determination of morphological and
Microscopy observation (simple and complex staining). Determination of biochemical and serological properties of microorganisms. Hydrolysis of carbohydrates. Anaerobic digestions: ethanol, lactic acid, butyric, propionic fermentation. Chemism, products, microorganisms. Oxygen fermentations (citric and acetic - chemistry, product, microorganisms). Application in biotechnology processes. The contribution of bacteria in the transformation of organic and mineral nitrogen compounds (proteolysis, ammonification, nitrification, denitrification - substrates, products, microorganisms). N2 fixing by free-living and symbiotic bacteria. Ecological and economic importance of microorganisms – food production, antibiotic production, virulence. Assessment of the impact of chemical and physical agents (pesticides, detergents and heavy metals and preservatives) on microorganisms. Assessment of microbiological quality of food products (milk, raw products, and water: coli titer, total number of bacteria, molds and yeast, determination and characterisation of indicator bacteria: <i>Escherichia coli, Streptococcus faecalis, Salmonella</i> spp.		physiological properties of bacteria and actinobacteria and fungi (molds, yeast).
biochemical and serological properties of microorganisms. Hydrolysis of carbohydrates. Anaerobic digestions: ethanol, lactic acid, butyric, propionic fermentation. Chemism, products, microorganisms. Oxygen fermentations (citric and acetic - chemistry, product, microorganisms). Application in biotechnology processes. The contribution of bacteria in the transformation of organic and mineral nitrogen compounds (proteolysis, ammonification, nitrification, denitrification - substrates, products, microorganisms). N ₂ fixing by free-living and symbiotic bacteria. Ecological and economic importance of microorganisms – food production, antibiotic production, virulence. Assessment of the impact of chemical and physical agents (pesticides, detergents and heavy metals and preservatives) on microorganisms. Assessment of microbiological quality of food products (milk, raw products, and water: coli titer, total number of bacteria, molds and yeast, determination and characterisation of indicator bacteria: <i>Escherichia coli, Streptococcus faecalis, Salmonella</i> spp.		Microscopy observation (simple and complex staining). Determination of
carbohydrates. Anaerobic digestions: ethanol, lactic acid, butyric, propionic fermentation. Chemism, products, microorganisms. Oxygen fermentations (citric and acetic - chemistry, product, microorganisms). Application in biotechnology processes. The contribution of bacteria in the transformation of organic and mineral nitrogen compounds (proteolysis, ammonification, nitrification, denitrification - substrates, products, microorganisms). N ₂ fixing by free-living and symbiotic bacteria. Ecological and economic importance of microorganisms – food production, antibiotic production, virulence. Assessment of the impact of chemical and physical agents (pesticides, detergents and heavy metals and preservatives) on microorganisms. Assessment of microbiological quality of food products (milk, raw products, and water: coli titer, total number of bacteria, molds and yeast, determination and characterisation of indicator bacteria: <i>Escherichia coli, Streptococcus faecalis, Salmonella</i> spp.		biochemical and serological properties of microorganisms. Hydrolysis of
fermentation. Chemism, products, microorganisms. Oxygen fermentations (citric and acetic - chemistry, product, microorganisms). Application in biotechnology processes. The contribution of bacteria in the transformation of organic and mineral nitrogen compounds (proteolysis, ammonification, nitrification, denitrification - substrates, products, microorganisms). N ₂ fixing by free-living and symbiotic bacteria. Ecological and economic importance of microorganisms – food production, antibiotic production, virulence. Assessment of the impact of chemical and physical agents (pesticides, detergents and heavy metals and preservatives) on microorganisms. Assessment of microbiological quality of food products (milk, raw products, and water: coli titer, total number of bacteria, molds and yeast, determination and characterisation of indicator bacteria: <i>Escherichia coli, Streptococcus faecalis, Salmonella</i> spp.		carbohydrates. Anaerobic digestions: ethanol, lactic acid, butyric, propionic
and acetic - chemistry, product, microorganisms). Application in biotechnology processes. The contribution of bacteria in the transformation of organic and mineral nitrogen compounds (proteolysis, ammonification, nitrification, denitrification - substrates, products, microorganisms). N ₂ fixing by free-living and symbiotic bacteria. Ecological and economic importance of microorganisms – food production, antibiotic production, virulence. Assessment of the impact of chemical and physical agents (pesticides, detergents and heavy metals and preservatives) on microorganisms. Assessment of microbiological quality of food products (milk, raw products, and water: coli titer, total number of bacteria, molds and yeast, determination and characterisation of indicator bacteria: <i>Escherichia coli, Streptococcus faecalis, Salmonella</i> spp.		fermentation. Chemism, products, microorganisms. Oxygen fermentations (citric
processes. The contribution of bacteria in the transformation of organic and mineral nitrogen compounds (proteolysis, ammonification, nitrification, denitrification - substrates, products, microorganisms). N ₂ fixing by free-living and symbiotic bacteria. Ecological and economic importance of microorganisms – food production, antibiotic production, virulence. Assessment of the impact of chemical and physical agents (pesticides, detergents and heavy metals and preservatives) on microorganisms. Assessment of microbiological quality of food products (milk, raw products, and water: coli titer, total number of bacteria, molds and yeast, determination and characterisation of indicator bacteria: <i>Escherichia coli, Streptococcus faecalis, Salmonella</i> spp.		and acetic - chemistry, product, microorganisms). Application in biotechnology
 mineral nitrogen compounds (proteolysis, ammonification, nitrification, denitrification - substrates, products, microorganisms). N₂ fixing by free-living and symbiotic bacteria. Ecological and economic importance of microorganisms – food production, antibiotic production, virulence. Assessment of the impact of chemical and physical agents (pesticides, detergents and heavy metals and preservatives) on microorganisms. Assessment of microbiological quality of food products (milk, raw products, and water: coli titer, total number of bacteria, molds and yeast, determination and characterisation of indicator bacteria: <i>Escherichia coli, Streptococcus faecalis, Salmonella</i> spp. 		processes. The contribution of bacteria in the transformation of organic and
denitrification - substrates, products, microorganisms). N ₂ fixing by free-living and symbiotic bacteria. Ecological and economic importance of microorganisms – food production, antibiotic production, virulence. Assessment of the impact of chemical and physical agents (pesticides, detergents and heavy metals and preservatives) on microorganisms. Assessment of microbiological quality of food products (milk, raw products, and water: coli titer, total number of bacteria, molds and yeast, determination and characterisation of indicator bacteria: <i>Escherichia coli, Streptococcus faecalis, Salmonella</i> spp.		mineral nitrogen compounds (proteolysis, ammonification, nitrification,
and symbiotic bacteria. Ecological and economic importance of microorganisms – food production, antibiotic production, virulence. Assessment of the impact of chemical and physical agents (pesticides, detergents and heavy metals and preservatives) on microorganisms. Assessment of microbiological quality of food products (milk, raw products, and water: coli titer, total number of bacteria, molds and yeast, determination and characterisation of indicator bacteria: <i>Escherichia coli, Streptococcus faecalis, Salmonella</i> spp.		denitrification - substrates, products, microorganisms). N ₂ fixing by free-living
 food production, antibiotic production, virulence. Assessment of the impact of chemical and physical agents (pesticides, detergents and heavy metals and preservatives) on microorganisms. Assessment of microbiological quality of food products (milk, raw products, and water: coli titer, total number of bacteria, molds and yeast, determination and characterisation of indicator bacteria: <i>Escherichia coli, Streptococcus faecalis, Salmonella</i> spp. 		and symbiotic bacteria. Ecological and economic importance of microorganisms
chemical and physical agents (pesticides, detergents and heavy metals and preservatives) on microorganisms. Assessment of microbiological quality of food products (milk, raw products, and water: coli titer, total number of bacteria, molds and yeast, determination and characterisation of indicator bacteria: <i>Escherichia coli, Streptococcus faecalis, Salmonella</i> spp.		- food production, antibiotic production, virulence. Assessment of the impact of
preservatives) on microorganisms. Assessment of microbiological quality of food products (milk, raw products, and water: coli titer, total number of bacteria, molds and yeast, determination and characterisation of indicator bacteria: <i>Escherichia coli, Streptococcus faecalis, Salmonella</i> spp.		chemical and physical agents (pesticides, detergents and heavy metals and
products (milk, raw products, and water: coli titer, total number of bacteria, molds and yeast, determination and characterisation of indicator bacteria: <i>Escherichia coli, Streptococcus faecalis, Salmonella</i> spp.		preservatives) on microorganisms. Assessment of microbiological quality of food
molds and yeast, determination and characterisation of indicator bacteria: <i>Escherichia coli, Streptococcus faecalis, Salmonella</i> spp.		products (milk, raw products, and water: coli titer, total number of bacteria,
Escherichia coli, Streptococcus faecalis, Salmonella spp.		molds and yeast, determination and characterisation of indicator bacteria:
		Escherichia coli, Streptococcus faecalis, Salmonella spp.

6. METHODS OF VERIFICATION OF LEARNING OUTCOMES

LEADNING	Form of assessment					
OUTCOME	Oral examination	Written exam	Colloquium	Project	Presentation	
W1		х			Х	
W2		х				
W3		Х				

U1	Х			
U2	Х			
K1	Х		Х	
K2	Х			

7. LITERATURE

Basic literature	Hogg, S. (2005) Essential Microbiology. Wiley-Blackwell (available on-line) Archunan, G. (2004). Microbiology. Indie: Sarup Book Publishers Pvt. Limited (available on-line)
Supplementary literature	Scientific journals recommended by the teacher.

8. TOTAL STUDENT WORKLOAD REQUIRED TO ACHIEVE EXPECTED LEARNING OUTCOMES EXPRESSED IN TIME AND ECTS CREDITS

S	Student workload– number of hours	
Classes conducted under a	Participation in classes indicated in point 1B	35
direct supervision of an academic teacher or other persons responsible for classes	Supervision hours	15
	Preparation for classes	20
Student's own work	Reading assignments	25
	Other (preparation for exams, tests, carrying out a project etc)	80
Total student workload	175	
	7	