a. Basic information

Course title	Plastics part design
Field of study	Mechanical Engineering
Cycle	first degree
Study profile	general academic
Study mode	full-time
Specialisation	Techniques of Plastics
Unit responsible for the field of study	Faculty of Mechanical Engineering
Lecturer	Dariusz Sykutera, DSc Karol Pepliński, PhD Piotr Czyżewski, PhD
Introductory courses	Engineering graphics, Engineering materials
Prerequisites	Computer aided design - CAD

b. Semester/ weekly timetable

Semester	Lectures (W)	Classes (C)	Laboratories (L)	Project classes (P)	Seminars (S)	Fieldwork (T)	ECTS credits ECTS*
VI	15			15			5

C. Assumed outcomes and aims - aims bind the course programme with the study programme and are referred to in learning outcomes point 2

2. LEARNING OUTCOMES (acc. to National Qualifications Framework)

No.	Description of learning outcomes	Reference to learning outcomes for the field of study	Reference to learning outcomes for the area of study	
	KNOWLEDGE			
K1	has knowledge in the field of construction of plastics products, inter alia: injected and blowing products	K_W07	P6S_WG	
	SKILLS			
S1	can prepare technical documentation for the designed polymer product	K_U02	P6S_UW	
S2	has the ability to use CAD programs in the preparation of spatial and flat documentation	K_U03	P6S_UW	
SOCIAL COMPETENCES				
SC1	is aware of the responsibility for their own work and readiness to submit to the principles of teamwork, and to be responsible for jointly performed tasks.	K_K02	P6S_KK	

SC2	can think and act creatively in the field of designing	K_K03	P6S_KO
	plastics products		

3. TEACHING METHODS

multimedia lecture, project, and other methods, e.g. videos, books, catalogs, diagrams, blackboard, online techniques, exercise workbook classes, lectures, brainstorming, discussion, show, situational methods, mind maps, drama, etc.

4. METHODS OF EXAMINATION

class attendance, final pass, partial or final project report during design classes, presentation final project

5. COURSE CONTENT

Specify the content	An introduction to the sustainable design and construction of plastics part design
separately for each	products in a circular economy. Designing, prototyping, testing. The technological
· ·	basis for the design and construction of injection moldings: thickness and shape of
type of classes in	the walls of products. Strengthening walls, openings, and edges. Wall slopes.
accordance with point	Shape and arrangement of holes. Undercuts and side openings. Hooks. Threads.
I.B.	Flexible hinges. Shaping the surface of moldings, and connection lines.
	Partitioning planes. Molded pieces with crimps.
Lecture	Basics of design and construction of blow-molded products: thickness and shape
	of the walls of blow-molded products, bottles: neck, body, bottom, handle. Wall
	reinforcements and slopes. Other blown products, for example, technical products.
	The essence of the design and construction of PET-blown products from the point
	of view of the application of final products and the unit demand of polymeric
	material for the product.
	Designing and assessing the condition and structure of products with balanced
Project	features, produced by injection and blow molding techniques, for the example
	bottle packaging or polymer molding (distribution of topics, project evaluation).
	Development of design steps leading to the completion of a specific task.
	Preparation of spatial models and flat documentation. Presentation and discussion
	of completed projects in the form of presentations.

6. VALIDATION OF LEARNING OUTCOMES

(Each learning outcome from the list requires validation methods to ensure that it was achieved by a student.)

Loorning	Form of assessment					
Learning outcome	Oral examination	Written examination	Final pass	Project	Report	Class attendance
K1			Х	Х		Х
S1 - S2			Х	Х		Х
SC1 – SC2			Х	Х		Х

7. LITERATURE

Basic literature	1. Robert A. Malloy.: Plastic Part Design for Injection Molding An Introduction
	2nd Edition. Carl Hanser Verlag, Munich 2010
	2. Rosato, D., Rosato, A., DiMattia, D.: Blow Molding Handbook 2E. Hanser
	Publications; 2nd edition 2004
Supplementary	1. Alfredo Campo E.: The Complete Part Design Handbook: For Injection
literature	Molding of Thermoplastics. Hanser Publishers, Munich 2006
	2. Engineering Polymers. Part end mold design – thermoplastics. A Design
	Guide. Bayer Material Science Publisher 2006

8. TOTAL STUDENT WORKLOAD REQUIRED TO ACHIEVE EXPECTED LEARNING OUTCOMES EXPRESSED IN TIME AND ECTS CREDITS

Student'	Student workload– number of hours		
Classes conducted under a direct	Participation in classes indicated in	30	
supervision of an academic teacher or	point 2.2		
other persons responsible for classes			
Student's own work	Preparation for classes	20	
	Reading assignments		
	Other (preparation for exams, tests,	40	
	carrying out a project etc)		
Total student workload	125		
	Final number of ECTS credits	5	