Course code

1. INFORMATION ABOUT THE COURSE

a. Basic information

Course title	Dynamics of Machines
Field of study	Mechanical Engineering
Cycle	First degree
Study profile	General academic
Study mode	Full-time or part-time
Specialization	
Unit responsible for the field of study	Department of Mechanics and Computer Methods
Lecturer	Mariusz Kukliński, PhD
Introductory courses	Mathematics, basic physics
Prerequisites	No prerequisites

b. Semester/ weekly timetable

Semester	Lectures (W)	Classes (C)	Laboratories (L)	Project classes (P)	Seminars (S)	Fieldwork (T)	ECTS credits ECTS*
	15	15	15				4

C. Assumed outcomes and aims - aims bind the course programme with the study programme and are referred to in learning outcomes point 2

2. LEARNING OUTCOMES (acc. to National Qualifications Framework)

No.	Description of learning outcomes	Reference to learning outcomes for the field of study	Reference to learning outcomes for the area of study		
	KNOWLEDGE				
K1	has knowledge of technical mechanics, especially in the field of vibration analysis	K_W04	P6S_WG		
K2	has knowledge of constructing vibroinsulating fasteners	K_W07	P6S_WG		
	Skills				
S1	is able to plan and carry out measurements of geometric features of machine elements	K_U04	P6S_UW		
S2	is able to design simple machines and devices, taking into account given technical, operational and economic criteria	K_U05	P6S_UW		
SOCIAL COMPETENCES					

SC1	is aware of the importance and understands the non-	K_K04	P6S_KO
	technical aspects and effects of mechanical engineer's activities, including their impact on the environment and		
	the related responsibility for decisions made		

3. TEACHING METHODS

Multimedia lectures, computational exercises and laboratories

4. METHODS OF EXAMINATION

Lectures: class attendance and/or test, Exercises: computational test or project; Laboratories: reports

5. COURSE CONTENT

Specify the content	LECTURES
separately for each	1. Harmonic force, free vibrations of one degree of freedom, simple and
type of classes in	physical pendulum, energy of harmonic motion.
• •	2. Harmonic damped vibrations, logarithmic decrement.
accordance with point	3. Forced damped vibrations.
I.B.	4. Transient and steady state harmonic vibrations, resonance.
	5. Superposition of vibrations.
	6. Rumbling phenomenon.
	7. <i>Free vibrations of many degrees of freedom, natural frequencies.</i>
	8. Vibration reduction methods, dynamic undamped vibration reducer.
	9. The inertia tensor
	10. Dynamic reactions of rotating body.
	11. Types of unbalance.
	12. Rotor balancing methods.
	13. Nonlinear vibrations of one degree of freedom.
	14. Self-excited vibrations.
	15. Preparation for the computational test or project.
	EXERCISES
	Computational exercises scheduled according to the lecture's pace.
	LABORATORIES
	1. Introductory classes.
	2. Six practical or numerical experiments available in dynamic's
	laboratory room e.g.: measurements of friction torque and braking
	torque in bearings, test of dynamic vibration reducer, determination of
	natural frequencies of a frame using numerical simulation codes,
	measurement of natural frequencies of a frame and comparison with
	numerical simulation results, balancing a rotating shaft, measurement of
	gyroscopic moment.
	<i>3. Final classes and issuing final grades in laboratories.</i>

6. VALIDATION OF LEARNING OUTCOMES

(Each learning outcome from the list requires validation methods to ensure that it was achieved by a student.)

Looming	Form of assessment (for example:)					
Learning outcome	Oral examination	Written examination	Test	Project	Report	Class attendance
K1-K2			Х	Х	Х	Х
S1-S2			Х	Х	Х	Х
SC1			Х	Х	Х	Х

7. LITERATURE

Basic literature	1. Hendzel Z., Żylski W., General mechanics: dynamics, Rzeszów, 2016.
	2. Żółtowski B., Żółtowski M., Vibration signals in mechanical engineering and
	construction, Bydgoszcz, 2015.
	3. Kolovsky M. Z., Belyaev A. K., Nonlinear dynamics of active and passive
	systems of vibration protection, Berlin, 1999.
Supplementary	1. Wen Jeng Chen, Gunter E. J., Introduction to dynamics of rotor-
literature	bearing systems.

8. TOTAL STUDENT WORKLOAD REQUIRED TO ACHIEVE EXPECTED LEARNING OUTCOMES EXPRESSED IN TIME AND ECTS CREDITS

Student'	Student workload– number of hours (for example:)	
Classes conducted under a direct	Participation in classes indicated in	45
supervision of an academic teacher or	point 2.2	
other persons responsible for classes	Supervision hours	5
Student's own work	Preparation for classes	15
	Reading assignments	15
	Other (preparation for exams, tests,	20
	carrying out a project etc)	
Total student workload	100	
	4	