D.1.2

Course code:

1. INFORMATION ABOUT THE COURSE

a. Basic information

Course title	Computational Methods in Machinery
Field of study	Mechanical Engineering
Cycle	first degree
Study profile	general academic
Study mode	full-time
Specialisation	Machine technology
Unit responsible for the field of study	Faculty of Mechanical Engineering
Lecturer	Sylwester Borowski, PhD
Introductory courses	The basics of Mechanics and Machine Design.
Prerequisites	The scope of knowledge / skills / social competences resulting from the introductory subjects

b. Semester/ weekly timetable

Semester	Lectures	Classes	Laboratories	Project classes	Seminars	Fieldwork	ECTS credits
	(W)	(C)	(L)	(P)	(S)	(T)	ECTS*
VI	30		15				3

C. Assumed outcomes and aims - aims bind the course programme with the study programme and are referred to in learning outcomes point 2

2. LEARNING OUTCOMES (acc. to National Qualifications Framework)

No.	Description of learning outcomes	Reference to learning outcomes for the field of study	Reference to learning outcomes for the area of study
	KNOWLEDGE		
K1	has knowledge of manufacturing engineering:	K_W10	P6S_WG
	techniques, processes and machines.		
	SKILLS		
S1	is able to plan the production process of simple machines and devices and to initially estimate its costs	K_U06	P6S_UW
S2	has the ability to self-study, inter alia, to improve professional competences	K_U12	P6S_UU
	SOCIAL COMPETENCES		
SC1	is aware of the importance and understands the non- technical aspects and effects of a mechanical engineer's activity, including its impact on the	K_K04	P6S_KO

environment, and the related responsibility for	
decisions	

3. TEACHING METHODS

multimedia lecture, laboratory and other methods, e.g. videos, books, catalogues, diagrams, blackboard, on-line techniques, exercise workbook classes, lectures, brainstorming, discussion, show, situational methods, mind maps, drama, etc.

4. METHODS OF EXAMINATION

class attendance, final lecture written exam, partial or final report after the laboratory

5. COURSE CONTENT

Specify the content	Problems related to solving beams. Issues of the modelling of under construction
separately for each type of classes in accordance with point I.B.	machines. Numerical analyses used in the mechanical engineering. Using computer methods to solve equations. Accuracy of the numerical solution - mistake of the discretization. Algorithm of the calculation program for beams. Irregularities in the design of algorithms. Techniques of the presentation of results of analyses. Final summary.
Lecture	
Laboratory	Solving an engineering problem with an Excel sheet, with a script in the Matlab environment (programs in other programming languages) and an engineering mobile application. Summary of the course cycle.

6. VALIDATION OF LEARNING OUTCOMES

(Each learning outcome from the list requires validation methods to ensure that it was achieved by a student.)

Loorning		Fo	nt (for example	:)		
outcome	Oral examination	Written examination	Test	Project	Report	Class attendance
W1	Х				Х	Х
U1 - U2	Х				Х	Х
K1	Х				Х	Х

7. LITERATURE

Basic literature	1. Hibbeler R. C. Engineering Mechanics: Statics and Dynamics Pearson, 2015
	ISBN 0133915425, 9780133915426
	2. James L. Meriam, L. G. Kraige, J. N. Bolton Engineering Mechanics: Statics,
	John Wiley & Sons, 2020 ISBN 1119723515, 97811197235168
Supplementary	1. Abdulmajeed A Mohamad, Adel M Benselama, Numerical Methods For
literature	Engineers: A Practical Approach, World Scientific, 2022, ISBN: 978-981-
	125-525-0

8. TOTAL STUDENT WORKLOAD REQUIRED TO ACHIEVE EXPECTED LEARNING OUTCOMES EXPRESSED IN TIME AND ECTS CREDITS

Student'	Student workload– number of hours (for example:)	
Classes conducted under a direct supervision of an academic teacher or	Participation in classes indicated in point 2.2	45
other persons responsible for classes	Supervision hours	4
Student's own work	Preparation for classes	10
	Reading assignments	15

	Other (preparation for exams, tests, carrying out a project etc)	16
Total student workload		90
	Final number of ECTS credits	3