Course code

1. INFORMATION ABOUT THE COURSE

a. Basic information

Course title	Mechanics
Field of study	Mechanical Engineering
Cycle	first degree
Study profile	general academic
Study mode	full-time or part-time
Specialization	Machine technology
Unit responsible for the field of study	Department of Mechanics and Computer Methods
Lecturer	Mariusz Kukliński, PhD
Introductory courses	Mathematics, basic physics
Prerequisites	No prerequisites

b. Semester/ weekly timetable

Semester	Lectures (W)	Classes (C)	Laboratories (L)	Project classes (P)	Seminars (S)	Fieldwork (T)	ECTS credits ECTS*
	15 ^E	30					4

C. Assumed outcomes and aims - aims bind the course programme with the study programme and are referred to in learning outcomes point 2

2. LEARNING OUTCOMES (acc. to National Qualifications Framework)

No. Description of learning outcomes		Reference to learning outcomes for the field of study	Reference to learning outcomes for the area of study		
	KNOWLEDGE				
K1	has knowledge of technical mechanics	K_W04	P6S_WG		
	Skills				
S1	is able to prepare the technical documentation of simple projects	K_U02	P6S_UW		
S2	has the ability to self-study, inter alia, to improve professional competences	K_U12	P6S_UU		
SOCIAL COMPETENCES					

SC1	understands the need and knows the possibilities of	K_K01	P6S_KK
	continuous training - improving professional, personal and		
	social competences		

3. TEACHING METHODS

Multimedia lectures & exercises

4. METHODS OF EXAMINATION

Lectures: oral or written examination Exercises: computational test or project

5. COURSE CONTENT

Specify the content	LECTURES
separately for each	1. Fundamental properties of vectors, representation of vectors using
type of classes in	rectangular components, basic operations with vectors.
accordance with point	2. Numbers of degrees of freedom, Newton's Third Law, principle of
I.B.	transmissibility, parallel forces, center of parallel forces.
	3. Resultant force of the system, equilibrium equations of concurrent force system.
	4. Moment of force about a point and an axis, reducing a force system
	to a force and a couple, equilibrium equations of non-concurrent force system.
	5. Velocity and acceleration in rectilinear and curvilinear motion of a particle.
	6. Equations of motion in rectangular and polar coordinate system.
	7. Relative motion of particles, the Coriolis acceleration.
	8. Planar motion of rigid bodies, instantaneous centre of rotation.
	9. Spherical motion of rigid bodies, Euler angles.
	10. Dry friction, Coulomb's friction laws, static and kinetic friction,
	sliding friction, belt and cable friction, rolling friction.
	11. Work and kinetic energy, potential energy, conservation of energy.
	12. Newton's Second Law in rectilinear motion, linear impulse and
	linear momentum, conservation of linear momentum, collisions.
	13. Mass moment of inertia.
	14. Newton's Second Law in angular motion, impulse and momentum
	in angular motion.
	15. Conservation of angular momentum, gyroscopic motion.
	EXCERCISES
	1. Practicing basic operations with vectors.
	2. Solving planar truss constructions.
	3. Solving spatial truss constructions.
	4. Solving simple and complex planar beams.
	5. Solving planar frames.
	6. Calculation of velocities and accelerations in rectilinear motion,
	equations of motion of particles in Earth's gravitational field.

7. Calculation of velocities and accelerations in angular motion of
particles, cases of relative motion and Coriolis acceleration.
8. Planar motion of rigid bodies.
9. Spherical motion of rigid bodies.
10. Solving problems involving friction.
11. Solving problems related to conservation energy.
12. Newton's Second Law and conservation of momentum, collisions.
13. Calculation of moments of inertia of continuous bodies.
14. Solving problems related to Newton's Second Law in angular
motion and conservation of angular momentum and energy,
gyroscopic motion.
15. Computational test or discussion of computational project.

6. VALIDATION OF LEARNING OUTCOMES

(Each learning outcome from the list requires validation methods to ensure that it was achieved by a student.)

Looming	Form of assessment (for example:)					
Learning outcome	Oral examination	Written examination	Test	Project	Report	Class attendance
K1	Х	Х	Х	Х		х
S1-S2	Х	Х	Х	Х		Х
SC1	Х	Х	Х	Х		Х

7. LITERATURE

Basic literature	1. Hendzel Z., Żylski W., General mechanics: statics, Rzeszów, 2016.
	2. Hendzel Z., Żylski W., General mechanics: kinematics, Rzeszów, 2016.
	3. Hendzel Z., Żylski W., General mechanics: dynamics, Rzeszów, 2016.
	4. Hughes J. H., Martin K. F., Basic Engineering Mechanics, Hong Kong, 1985.
Supplementary	1. Kurnik W., Theoretical mechanics for engineers, Warszawa, 2017.
literature	

8. TOTAL STUDENT WORKLOAD REQUIRED TO ACHIEVE EXPECTED LEARNING OUTCOMES EXPRESSED IN TIME AND ECTS CREDITS

Student'	Student workload– number of hours (for example:)	
Classes conducted under a direct	Participation in classes indicated in	45
supervision of an academic teacher or	point 2.2	
other persons responsible for classes	Supervision hours	5
Student's own work	Preparation for classes	15
	Reading assignments	15
	Other (preparation for exams, tests,	20
	carrying out a project etc)	
Total student workload	100	
	4	