Course code

1. INFORMATION ABOUT THE COURSE

a. Basic information

Course title	Machine Design Optimization	
Field of study	Mechanical Engineering	
Cycle	first degree	
Study profile	general academic	
Study mode	full-time	
Specialisation		
Unit responsible for the field of study	Faculty of Mechanical Engineering, Department of Design	
Lecturer	Michał Piotrowski, PhD	
Introductory courses	Mathematics, Mechanics, Physics, Information Technology, Organization and Management, Fundamentals of Machine Design (FMD - lectures and practical classes) Engineering Graphics (EG with CAD]	
Prerequisites	Basic knowledge of mathematics, mechanics, physics, information technology and management is required. CAD, machine design etc	

b. Semester/ weekly timetable

Semester	Lectures (W)	Classes (C)	Laboratories (L)	Project classes (P)	Seminars (S)	Fieldwork (T)	ECTS credits ECTS*
winter	15			15			6
/summer							

C. Assumed outcomes and aims - aims bind the course programme with the study programme and are referred to in learning outcomes point 2

2. LEARNING OUTCOMES (acc. to National Qualifications Framework)

No.	Description of learning outcomes	Reference to learning outcomes for the field of study	Reference to learning outcomes for the area of study
	KNOWLEDGE		
K1	has knowledge of chemistry useful for understanding the issues of materials science and solid state physics	K1_W03	P6S_WG
K2	has knowledge in the field of construction and engineering graphics	K1_W07	P6S_WG
K3	has knowledge of machine operation	K1_W08	P6S_WG
K4	has knowledge in the field of metrology and measurement	K1_W12	P6S_WG

	systems		
K5	has basic knowledge of management, including quality management, and running a business	K1_W16	P6S_WK
	Skills	•	•
S1	can use numerical methods in machine construction	K1_U08	P6S_UW
S2	is able to present the results of research and design work	K1_U11	P6S_UK
	SOCIAL COMPETENCES	·	
SC1	is aware of the responsibility for their own work and is ready to comply with the rules of teamwork and take responsibility for jointly implemented tasks	K1_K02	P6S_KK
SC2	is aware of the importance and understands the non- technical aspects and effects of the activities of a mechanical engineer, including its impact on the environment, and the related responsibility for decisions made	K1_K4	P6S_KO
SC3	<i>is aware of the importance of the role of a mechanical engineer in innovative activity</i>	K1_K06	P6S_KR

3. TEACHING METHODS

Multimedia lecture, laboratory lessons, project, design classes, presentation, discussion, case study

4. METHODS OF EXAMINATION

class attendance, final project presentation, reports from the exercises

5. COURSE CONTENT

Specify the content	The course bases on three distinct sections: advanced mechanics theory, design
separately for each	optimization, and design for manufacturing. The advanced mechanics section
type of classes in	covers situations that are likely to be seen in a real world design problem and
accordance with point	focuses on developing student knowledge from a theoretical foundation. The key
	design optimization section of the course focuses on how to choose the best design
I.D.	for the situation based on a set of machine design criteria. This section uses various
	methods including MatLab optimization codes, and will combine theory and
Lecture	practical knowledge of machine design. Finally, the design for manufacturing
	section shows students how to communicate designs to individuals or
	companies responsible for manufacturing. This section focuses on the
	knowledge of standards and manufacturing processes and other important issues.
	-
Laboratory	
Projects	With accordance to the above mentioned procedure are based on weekly evaluated
	projects on specific individually given subjects.

6. VALIDATION OF LEARNING OUTCOMES

(Each learning outcome from the list requires validation methods to ensure that it was achieved by a student.)

Loorning	Form of assessment (for example:)					
outcome	Oral examination	Written examination	Test	Project	Report	Class attendance
W1 - W2				Х	Х	Х
U1 – U2				Х	Х	Х
K1				Х	Х	Х

7. LITERATURE

Basic literature	Optimization Methods for Engineering Design		
	Applications and Theory, 2013 Brigham Young University		
	Bhandari V.B., 2010, Design of Machine Elements (3rd ed.). Tata McGraw-Hill		
	Education.		
Supplementary	Shigley J., Mischke Ch., Brown T., 2004. Standard Handbook of Machine		
literature	literature Design. McGraw-Hill.		
	Buckingham E., 1949. Analytical Mechanics of Gears. McGraw-Hill Book Co.		
	Harris T.A., 2000. Rolling Bearing Analysis. 4th ed. Wiley-Interscience.		
	Canfiel S., 1999. "Gear Types", Dynamics of Machinery, Tennessee Tech		
	University. Department of Mechanical Engineering, ME 362 lecture notes.		

8. TOTAL STUDENT WORKLOAD REQUIRED TO ACHIEVE EXPECTED LEARNING OUTCOMES EXPRESSED IN TIME AND ECTS CREDITS

Student'	Student workload– number of hours (for example:)		
Classes conducted under a direct	Participation in classes indicated in	75	
supervision of an academic teacher or	point 2.2		
other persons responsible for classes	other persons responsible for classes Supervision hours		
Student's own work Preparation for classes Reading assignments		45	
		15	
	Other (preparation for exams, tests,	15	
	carrying out a project etc)		
Total student workload	145		
	Final number of ECTS credits	6	