Course code:

Plan position:

A. INFORMATION ABOUT THE COURSE

B. Basic information

Name of course	Chemical reactors engineering
Field of studies	Chemical Technology
Level of studies	Second degree
Profile of studies	General academic
Form of studies	Stationary
Specialty	 Waste material engineering Industrial Biotechnology Chemical and Foodstuff Analytics Modern Materials Technologies
Unit responsible for the field of studies	Faculty of Chemical Technology and Engineering / Department of Chemical and Biochemical Engineering
Name and academic degree of teacher(s)	Ireneusz Grubecki, BEng, PhD, DSc, Sylwia Kwiatkowska-Marks, BEng PhD, Justyna Miłek, BEng, PhD, Ilona Trawczyńska, BEng, PhD
Introductory courses	Fundamentals of Chemical Engineering Physical Chemistry Fundamentals of Mathematical Analysis
Introductory requirements	Basic knowledge on Mass,- Momentum- and Energy Transfer

C. Semester/week schedule of classes

Semester	Lectures (W)	Auditorium classes	Laboratory classes	Project classes	Seminar	Field classes	Number of ECTS points
	~ /	(Ć)	(L)	(P)	(S)	(T)	•
Summer	30	30					6

2. LEARNING OUTCOME

		The reference	The reference	
		to the	to the	
No	Larring outcomes description	learning	learning	
INO.	Learning outcomes description	outcomes of	outcomes for	
		specific field	the area	
		of study		
	KNOWLEDGE			
W1	Student has detailed knowledge of chemical engineering in	K W04	P7S WG	
	the field of chemical reactor engineering.	K_1104	175_00	
SKILLS				
U1	On successful completion of the course student can			
	evaluate the usefulness and ability to use new achievements	K 1109	P7S HW	
	in materials, apparatus and research methods to design	K_007	175_0 W	
	processes run in chemical reactors.			
U2	Student can applied the mathematical models to select and	K U10	P7S UW	
	design suitable reactor for specific chemical process.	<u>n_</u> 010	175_077	

	SOCIAL COMPETENCES		
K1	On successful completion of the course student is supposed to understand the need for lifelong learning, he can inspire and organize the learning process of the others.	K_K01	P7S_KK P7S_KO

3. TEACHING METHODS

A. Traditional methods used

Standard lecture with PowerPoint presentation. Calculations (excercise classes) performed by students under supervision of academic staff

4. METHODS OF EXAMINATION

Written colloquium from lectures and calculations classes

5. SCOPE

Lectures	The basic terms: extent, conversion, product yield and selectivity, independent
	reactions. Stoichiometric balance. Homogeneous process kinetics. Introduction to
	reactors design. Ideal reactors for a single reaction: batch and semi-batch reactor,
	Continuous stirred tank reactor, Plug flow reactor, Mixed flow reactors in series.
	Real reactors – Residence Time Distribution. Fundamentals of control and reactors
	optimization.
Calculations Classes	Solving of engineering problems discussed during the lectures.

6. METHODS OF VERIFICATION OF LEARNING OUTCOMES

	Form of assessment					
OUTCOME	Oral examination	Written exam	Colloquium	Project	Presentation	Reports
W1			×			
U1			×			
U2			×			
K1			×			

7. LITERATURE

Basic literature	1. O. Levenspiel: Chemical Reaction Engineering, Wiley & Sons, Inc. New York
	1999.
	2. M.E. Davis, R.J. Davis: Fundamentals of Chemical Reaction Engineering, McGraw
	– Hill, New York, 2003.
	3. G.F. Froment, K. B. Bischoff, J. de Wilde: Chemical Reactor Analysis and Design,
	John Wiley & Sons, Inc. New York, 2011.
Supplementary	1. Jean -Pierre Corriou: Process Control. Theory and Applications, Springer-Verlag,
literature	London 2004.
	2. H.F. Rase: Chemical Reactor Design for Process Plants. Case Studies and Design
	Data, John Wiley & Sons Inc., New York, 1977.

8. TOTAL STUDENT WORKLOAD REQUIRED TO ACHIEVE EXPECTED LEARNING OUTCOMES EXPRESSED IN TIME AND ECTS CREDITS

Student's activity		Student workload– number of hours
Classes conducted under a	Participation in classes indicated in point 1B	60
academic teacher or other persons responsible for classes	Supervision hours	20
	Preparation for classes	20

Student's own work	Reading assignments	10
	Other (preparation for exams, tests, carrying out a project etc)	40
Total student workload		150
	Number of ECTS points	6