Course code:

Plan position:

sition:

A. INFORMATION ABOUT THE COURSE

.....

B. Basic information

Name of course	Analytical Chemistry
Field of studies	Chemical Technology
Level of studies	First degree
Profile of studies	General academic
Form of studies	Stationary
Specialty	 Chemical process technology Bioengineering Chemistry and technology of cosmetics
Unit responsible for the field of studies	Faculty of Chemical Technology and Engineering/Division of General and Inorganic Chemistry
Name and academic degree of teacher(s)	Przemysław Kosobucki, Ph.D., D.Sc., Associate Professor; Katarzyna Jurek, Ph.D.
Introductory courses	Course of General Chemistry
Introductory requirements	Background of chemistry and physics from secondary school and basic knowledge of algebra

C. Semester/week schedule of classes

Semester	Lectures (W)	Auditorium classes	Laboratory classes	Project classes	Seminar	Field classes	Number of ECTS points
		(Ć)	(L)	(P)	(S)	(T)	
winter	15	15					4
summer			75				6

2. LEARNING OUTCOME

		The reference	The reference
		to the	to the
No	L corning outcomes description	learning	learning
INO.	Learning outcomes description	outcomes of	outcomes for
		specific field	the area
		of study	
	KNOWLEDGE		
W1	Has a structured, theoretically underpinned knowledge of	K_W03	P6S_WG
	general understanding of analytical chemistry.		
W2	Has knowledge of techniques and methods for the	K_W11	P6S_WG
	characterization and identification of chemical products.		
	SKILLS		
U1	Works individually and as part of a team.	K_U02	P6S_UO
			P6S_UK
U2	Selects analytical methods for the qualitative and quantitative determination of chemical compounds and evaluation of their physico-chemical properties.	K_U11	P6S_UW

SOCIAL COMPETENCES				
K1	Is aware of the responsibility for jointly tasks, which are	K_K04	P6S_KK	
	related to teamwork.		P6S_KO	

3. TEACHING METHODS

A. Traditional methods used

Multimedia lecture, laboratory experiments and calculations (classes) performed by students under supervision of academic staff.

4. METHODS OF EXAMINATION

Written exam from lectures, written tests from laboratories and classes.

5. SCOPE

Lectures	Process of quantitative chemical analysis. Errors and statistical calculations of					
	analytical results. Basic chemical laws used in quantitative analysis. Introduction					
	to gravimetric determinations. Fundamentals of quantitative analysis in solution.					
	Titrimetric analysis: acid-base, precipitations, redox, complexometric - EDTA.					
	Titration analyses in applications. Theory of indicators: acid – base, redox,					
	complexometric and precipitations. Classification of the instrumental methods.					
	Introduction to spectrophotometry, spectrophotometers, UV - Vis					
	spectrophotometry, IR spectroscopy in analytical applications, atomic absorption					
	and emission spectroscopy. NMR. Fundamentals of electrochemical methods:					
	potentiometry, conductometry. Introduction to chromatographic and					
	electromigration techniques.					
Classes	Calculation related to the preparation of solutions from a solid weight sample or					
	by dilution. Calculation rules related to the standardization of solutions.					
	Calculation related with determination of components by means of: volumetric,					
	alkacymetric, precipitation and redoximetry. Methods of calculations necessary for					
	instrumental determinations.					
Laboratories	Health and safety rules and good laboratory practices. Systematics of analytical					
	methods. Filtration and washing. Roasting and drying. Weighing determination of					
	selected ions. Volume analysis: alkacymetry, complexometry, precipitation					
	analysis and redoximetry. Standard solutions (preparation standardization),					
	selected markings in the field of volumetric analysis. Water analysis and artificial					
	fertilizers. Separation and analysis of ferrous and non-ferrous alloys (Al, Cu, Pb).					
	Physicochemical methods in quantitative analysis, with particular emphasis on					
	potentiometry, conductometry, spectrophotometry and electrogravimetry.					

6. METHODS OF VERIFICATION OF LEARNING OUTCOMES

	Form of assessment					
OUTCOME	Oral examination	Written exam	Colloquium	Project	Report	Credit for experiments
W1			х			
W2			X			X
U1						X
U2			Х			Х
K1			Х			Х

7. LITERATURE

Basic literature	1. Harvey D., 2000. Modern Analytical Chemistry. MC Graw Hill.
Supplementary	1. Harris D.C., 2010. Quantitative Chemical Analysis, W.H. Freeman and Co. N.Y. 8th
literature	Ed.
	2. Fifield F.W., Kealey D., 2000. Principles and Practice of Analytical Chemistry,
	Blackwell Science.
	3. Skoog D.A., Holler F.J., Holler F.J., Crouch S.R., 2014. Fundamentals of Analytical
	Chemistry, 9th Edition, Belmont.
	4. Materials prepared by lecturer.

8. TOTAL STUDENT WORKLOAD REQUIRED TO ACHIEVE EXPECTED LEARNING OUTCOMES EXPRESSED IN TIME AND ECTS CREDITS

S	Student workload– number of hours	
Classes conducted under a	Participation in classes indicated in point 1B	105
direct supervision of an academic teacher or other persons responsible for classes	Supervision hours	30
	Preparation for classes	40
Student's own work	Reading assignments	35
	Other (preparation for exams, tests, carrying out a project etc)	40
Total student workload	250	
	10	