Course code: Plan position:

A. INFORMATION ABOUT THE COURSE

B. Basic information

Name of course	Mathematical methods in chemical engineering		
Field of studies	Chemical Technology		
Level of studies	Second degree		
Profile of studies	General academic		
Form of studies	Stationary		
Specialty	 Waste material engineering Industrial Biotechnology Chemical and Foodstuff Analytics Modern Materials Technologies 		
Unit responsible for the field of studies	Faculty of Chemical Technology and Engineering / Department of Chemical and Biochemical Engineering		
Name and academic degree of teacher(s)	Ireneusz Grubecki, BEng, PhD, DSc, Sylwia Kwiatkowska-Marks, BEng PhD, Justyna Miłek, BEng, PhD, Ilona Trawczyńska, BEng, PhD,		
Introductory courses	Mathematical Analysis, Fundamentals of Chemical Engineering		
Introductory requirements	Basic knowledge on Mass,- Momentum- and Energy Transfer		

C. Semester/week schedule of classes

Semester	Lectures (W)	Auditorium classes	Laboratory classes	Project classes	Seminar	Field classes	Number of ECTS points
		(Ć)	(L)	(P)	(S)	(T)	
Summer	15		30				5

2. LEARNING OUTCOME

No.	Learning outcomes description	The reference to the learning outcomes of specific field of study	The reference to the learning outcomes for the area			
	KNOWLEDGE					
W1	On successful completion of the course student can apply mathematical methods useful to solve a simple engineering problems dealing with chemical engineering and technology.	P6S_WG	P6S_WG			
	SKILLS					
U1	On successful completion of the course student can use the knowledge in the field of mathematics and computer programs supporting the implementation of the problems typical for technology and chemical engineering.	K_U09	P7S_UW			
SOCIAL COMPETENCES						

K1	On successful completion of the course student is supposed to understand the need for lifelong learning, he can inspire and organize the learning process of the others.		P7S_KK P7S_KO
----	--	--	------------------

3. TEACHING METHODS

A. Traditional methods used

Standard lecture with PowerPoint presentation.

Calculation excercises in computer laboratory under supervision of academic staff

4. METHODS OF EXAMINATION

Individual solution of the engineering problem and preparing a calculation report.

5. SCOPE

Lectures	An introduction to Mathematical Modeling basic terms; Numerical	
	solutions for linear and non-linear systems of algebraic equations;	
	Numerical solutions for linear and non-linear systems of oridinary	
	differential equations; Numerical calculation of definite integrals	
	Numerical solution of partial differential equation; Statistical analysis of	
	mathematical models: Linear and non-linear regression, Numerical	
	calculations in chemical engineering.	
Computer Laboratory	Solving the engineering problems covering the lecture content during the classes.	

6. METHODS OF VERIFICATION OF LEARNING OUTCOMES

LEADNING	Form of assessment					
LEARNING OUTCOME	Oral examination	Written exam	Colloquium	Project	Presentation	Reports
W1				×		
U2				×		
K1				×		

7. LITERATURE

Basic literature	1. Rasmuson A., Anderson B., Olsson L., Anderson R. Mathematical Modeling in
	Chemical Engineering. Cambridge University Press, New York, 2014.
	2. Seinfeld J.H., Lapidus L. Mathematical methods in chemical engineering, Vol. 3,
	Process modeling, estimation, and identification. Prentice-Hall, 1974.
Supplementary	1. Aliev A.V., Mishchenkova O.V., Lipanov A.M. Mathematical modeling and
literature	numerical methods in chemical physics and mechanics. Apple Academic Press: CRC
	Press/Taylor & Francis Group, 2016.

8. TOTAL STUDENT WORKLOAD REQUIRED TO ACHIEVE EXPECTED LEARNING OUTCOMES EXPRESSED IN TIME AND ECTS CREDITS

Student's activity		Student workload— number of hours
Classes conducted under a	Participation in classes indicated in point 1B	45
direct supervision of an academic teacher or other persons responsible for classes	Supervision hours	20
	Preparation for classes	30
Student's own work	Reading assignments	10
	Other (preparation for exams, tests, carrying out a project etc)	20

Total student workload	125
Number of E	CTS points 5