Code

1. INFORMATION ABOUT THE COURSE

A. Basic information

Name of course	Architecture and Programming of Microcontrollers
Study level	First degree
Unit running the study	Faculty of Telecommunication, Computer Science and Electrical Engineering
programme Study programmo	
Study programme Speciality	
Name of teacher (s) and	Marta Gackowska MSc Eng., Gracjan Kątek MSc Eng., Piotr Kiedrowski
his academic degree	PhD Eng.
Introductory courses	none
Prerequisites	Basis of programming

B. Semester/week schedule of classes

Semester	Lectures	Classes	Laboratories	Project	Seminars	Field exercises	ECTS
winter or summer	15		15	15			8

2. EFFECTS OF EDUCATION (acc. to National Qualifications Framework)

Knowledge	Student has knowledge about the architecture and construction of a microprocessor system and the operation of various: communication interfaces, memories and means of programming.
Skills	Student can define and describe the concepts related to synchronous and asynchronous, serial and parallel transmission. Student can independently implement a system based on a microcontroller.
Competences	During the implementation of the project, he is aware of the standards of description, linguistic correctness and timely delivery of subsequent stages of work.

3. TEACHING METHODS

multimedia lecture, laboratories and project

4. METHODS OF EXAMINATION

written and/or oral exam

5. SCOPE

Lectures	Introduction to MicroPython and Microcontrollers architecture
Leotares	 Basics of programming with MicroPython on microcontrollers
	(variables, operators, loops, conditions)
	 Microcontroller's modules enabling
	 Low energy consumption concepts and their realisation
	Real Time Clock implementation and methods its accuracy
	supporting
	General-purpose input/output (GPIO)

	 Analog to digital converter (ADC) Serial communication (UART, SPI, I2C) with other devices using MicroPython Using external peripheries (e.g. OLED displays, temperature sensors) with MicroPython
Laboratories	Practical implementation of the tasks discussed in the lecture. Classes are based on Raspberry Pi Pico with MicroPython programming language or STMicroelectronics evaluation kits with C/C++ programming language.
Project	Individual project (80% of students activity depends on self studying/individual work) involving the implementation of a barrier control system using the MicroPython language and Raspberry Pi Pico microcontroller.

6. LITERATURE

Basic literature	Drogromming with MigroDython, Embodded Drogromming with
Basic interature	Programming with MicroPython. Embedded Programming with
	Microcontrollers and Python, Nicholas H. Tollervey, O'Reilly Media Inc. 2017.
	Or
	Programming with STM32: Getting Started with the Nucleo Board and
	C/C++, Donald Noris, March 2018, McGraw-Hill Education TAB
	ISBN: 9781260031324
Supplementary	Get started with MicroPython on Raspberry Pi Pico G.Halfacree, B. Everard,
literature	Raspberry Pi Trading Ltd. 2021.