Course code:

Plan position:

sition:

A. INFORMATION ABOUT THE COURSE

.....

B. Basic information

Name of course	Process control in Chemical Technology
Field of studies	Chemical technology
Level of studies	First degree
Profile of studies	General academic
Form of studies	Stationary
Specialty	 Chemical process technology Bioengineering Chemistry and technology of cosmetics
Unit responsible for the field of studies	Faculty of Chemical Technology and Engineering
Name and academic degree of teacher(s)	Terese Rauckyte-Żak, PhD; Jan Lamkiewicz, PhD
Introductory courses	machinery and apparature of chemical industry, chemical engineering, chemical technology
Introductory requirements	knowledge of basics of chemical technology

C. Semester/week schedule of classes

Semester	Lectures (W)	Auditorium classes	Laboratory classes	Project classes	Seminar	Field classes	Number of ECTS points
		(Ć)	(L)	(P)	(S)	(T)	
summer	15		30				5

2. LEARNING OUTCOME

		The reference	The reference				
		to the	to the				
No.	Learning outcomes description	learning	learning				
INO.	Learning outcomes description	outcomes of	outcomes for				
		specific field	the area				
		of study					
	KNOWLEDGE						
W1	Student knows the principles of operation of control-	K_W06	P6S_WG				
	measurement systems and electronic control systems.						
W2	Knows the basics of chemical process kinetics and	K_W10	P6S_WG				
	technical as well as chemical thermodynamics.						
	SKILLS						
U1	Applies knowledge (including the use of engineering	K_U07	P6S_UW				
	thermodynamics) in the implementation and design of						
	simple chemical processes and unit operations and explains						
	the basic phenomena associated with relevant processes in						
	chemical technology and engineering.						

U2	Able to apply appropriate methods to control chemical	K_U17	P6S_UW
	processes.		

3. TEACHING METHODS

A. Traditional methods used

Multimedia lectures, laboratory classes.

4. METHODS OF EXAMINATION

Lectures - written exam, laboratory classes - submit reports.

5. SCOPE

Lectures	Software for continuous process control. Temperature sensors in the control of heat			
	transfer media. Pressure and mass sensors. Liquid and bulk materials. Process			
	control of wastewater treatment. Meters, flow meters. Conductivity, pH, ORP,			
	dissolved oxygen meters. Turbidimetric, fluorimetric, refractometric			
	measurements, viscometric. Apparatus for the automatic determination of DOC,			
	Na ⁺ , Cl ₂ , ClO ₂ , PO ₄ ³⁻ . Process control in the synthesis of monomers and polymers.			
	Process control in the production of dyes, pigments, paints, processes			
	petrochemicals, wastewater treatment plants, metal materials and in the food			
	industry. On-line techniques in chemical and process analysis.			
Laboratories	The student performs a selected exercises from the set: Purification of a chemical			
	tank. Dynamics of temperature controller operation. Energy efficiency of the			
	distiller. Monitoring the leaching of contaminants from a retention tank. Catalytic			
	reaction kinetics. Dynamic equilibria of ion exchange. Regulation and control of			
	the heating and cooling process. Flow regulation and control. Regulation and			
	control of pressure. Distillation process control. Temperature regulation and			
	control. Control of chemical reactions. Monitoring and control of chemical			
	concentrations.			

6. METHODS OF VERIFICATION OF LEARNING OUTCOMES

LEARNING	Form of assessment					
OUTCOME	Oral examination	Written exam	Colloquium	Project	Presentation	Report
W1		Х				
W2		Х				
U1						X
U2						Х

7. LITERATURE

Basic literature	1. Johnson C.D., 2009, Process Control Instrumentation Technology, Pearson/Prentice
	Hall.
	2. Speight J.G., 2002, Chemical and process design handbook, McGraw-Hill. 3. Chopey
	N.P., 1996, Instrumentation and Process Control, McGraw-Hill.
	4. McMillan G.K. Ed., 1999, Process industrial instruments and controls handbook,
	McGraw-Hill.

Supplementary	1. Instrument Engineers' Handbook, Process Measurement and Analysis, 2003, Vol. I,	
literature	Lipták B. G. Editor-in-chief, ISA-The Instrumentation, Systems, and Automation	
	Society, CRC Press, Boca Raton London New York Washington, D.C.	

8. TOTAL STUDENT WORKLOAD REQUIRED TO ACHIEVE EXPECTED LEARNING OUTCOMES EXPRESSED IN TIME AND ECTS CREDITS

S	Student workload– number of hours	
Classes conducted under a	Participation in classes indicated in point 1B	45
direct supervision of an academic teacher or other persons responsible for classes	Supervision hours	30
	Preparation for classes	15
Student's own work	Reading assignments	15
	Other (preparation for exams, tests, carrying out a project etc)	20
Total student workload	125	
	5	