Course code:

1. INFORMATION ABOUT THE COURSE

a. Basic information

Course title	Additive manufacturing techniques
Field of study	Mechanical Engineering
Cycle	first degree
Study profile	general academic
Study mode	full-time
Specialisation	Techniques of Plastics
Unit responsible for the field of study	Faculty of Mechanical Engineering
Lecturer	Karol Pepliński, PhD Dawid Marciniak, MSc
Introductory courses	Engineering graphics, Engineering materials
Prerequisites	Computer aided design - CAD

b. Semester/ weekly timetable

Semester		Classes	Laboratories	Project classes	Seminars	Fieldwork	ECTS credits
	(W)	(C)	(L)	(P)	(S)	(1)	ECTS*
VI	30		15				4

C. Assumed outcomes and aims - aims bind the course programme with the study programme and are referred to in learning outcomes point 2

2. LEARNING OUTCOMES (acc. to National Qualifications Framework)

No.	Description of learning outcomes	Reference to learning outcomes for the field of study	Reference to learning outcomes for the area of study
	KNOWLEDGE		
K1	Has knowledge of: AM systems engineering processes, construction and operation of additive manufacturing and devices.	K_W08	P6S_WG
K2	Has knowledge of how to produce construction and prototype elements from various materials (plastics, metals) by adding successive layers of material.	K_W10	P6S_WG
	SKILLS		
S1	Can select construction materials for a specific technique of additive manufacturing and the expected properties of the final product.	K_U05	P6S_UW
S2	Can develop a numerical algorithm to control working elements in additive manufacturing processes.	K_U08	P6S_UW

SOCIAL COMPETENCES				
SC1	Understands the need for continuous training and deepening of his practical skills in the area of additive techniques		P6S_KK	

3. TEACHING METHODS

multimedia lecture, laboratory and other methods, e.g. videos, books, catalogs, diagrams, blackboard, online techniques, exercise workbook classes, lectures, brainstorming, discussion, show, situational methods, mind maps, drama, etc.

4. METHODS OF EXAMINATION

class attendance, final pass, partial or final report during/after the laboratory

5. COURSE CONTENT

Specify the content separately for each type of classes in accordance with point I.B.	From traditional manufacturing to additive manufacturing. Systems engineering processes AM. Evaluation of existing modeling software. Additive manufacturing techniques – State of the art and trends: Engineering and manufacturing proces, Rapid prototyping cycle, Exchange format, Economy and users. AM techniques: Laser technologies, Flash technology, Extrusion technologies , Jet technologies, Discussion. New trends in additive manufacturing: Biomedical. Manufacturing interoperability, Rapid tooling,
Lecture	Topological optimization, Standards in additive manufacturing. Additive manufacturing techniques review - from prototyping to production. Stereolithography, Fused deposition modeling, 3D Ink-Jet printing, Direct metal laser sintering, Direct metal deposition, Selective laser sintering, Additive/Subtractive - hybrid manufacturing technologies. Reverse engineering for AM. The use of additive techniques in the construction of prototype and serial tools for the injection and blow molding process. Differences between 3D, 4D and 5D additive techniques. Ecodesign of products in the produced additive technologies in terms of recycling of materials.
laboratory	Properties of materials for additive manufacturing technology, parameters of the additive manufacturing process, software for g-code generation, additive manufacturing in SLA, FDM / FFF, SLS, CFF technology, verification of learning outcomes.

6. VALIDATION OF LEARNING OUTCOMES

(Each learning outcome from the list requires validation methods to ensure that it was achieved by a student.)

Looming	Form of assessment					
Learning outcome	Oral examination	Written examination	Final pass	Test	Report	Class attendance
K1 – K2			Х		Х	Х
S1 - S2			Х		Х	Х
SC1			Х		Х	Х

7. LITERATURE

Basic literature	 Adedeji B. Badiru et al.: Additive Manufacturing Handbook. 2017 by Taylor & Francis Group, LLC
Supplementary	1. Design World. 2021 Additive Manufacturing Handbook.
literature	www.designworldonline.com (data access 23.05.2022)
	2. Durai P. et al. A current state of metal additive manufacturing methods: A
	review. Materials Today: Proceedings 59 (2022) 1277-1283
	3. Pragana J.P.M. et al.: Hybrid metal additive manufacturing: A state-of-the-art

review. Advances in Industrial and Manufacturing Engineering 2 (2021) 100032

8. TOTAL STUDENT WORKLOAD REQUIRED TO ACHIEVE EXPECTED LEARNING OUTCOMES EXPRESSED IN TIME AND ECTS CREDITS

Student'	Student workload– number of hours	
Classes conducted under a direct	Participation in classes indicated in	45
supervision of an academic teacher or	point 2.2	
other persons responsible for classes	Supervision hours	5
Student's own work	10	
	Reading assignments	30
	Other (preparation for exams, tests,	15
	carrying out a project etc)	
Total student workload	105	
	4	