Course code:		Plan position:	
--------------	--	----------------	--

A. INFORMATION ABOUT THE COURSE

B. Basic information

Name of course	Geodesy and Geoinformation
Field of studies	Civil engineering
Level of studies	Bachelor's degree
Profile of studies	general academic
Form of studies	full-time (weekdays)
Specialty	
Unit responsible for the field of studies	Faculty of Civil and Environmental Engineering and Architecture
Name and academic degree of teacher(s)	Małgorzata Sztubecka PhD Eng.
Introductory courses	no requirements
Introductory requirements	no requirements

C. Semester/week schedule of classes

Semester	Lectures (W)	Auditorium classes	Laboratory classes	Project classes	Seminar	Field classes	Number of ECTS points
	, ,	(Ć)	(L)	(P)	(S)	(T)	
Summer	30						6

2. LEARNING OUTCOME

		The reference	The reference			
		to the	to the			
No.	Learning outcomes description	learning	learning			
NO.	Learning outcomes description	outcomes of	outcomes for			
		specific field	the area			
		of study				
	KNOWLEDGE					
K1	Student knows geodetic technologies; has basic knowledge	K_W08	P6S_WG			
	enabling the use of computer maps in the process of					
	investment implementation					
K2	Student knows issues in the field of GIS	K_W08	P6S_WG			
	SKILLS	<u> </u>				
S 1	Student can plan and carry out an experiment and analyze	K_U04	P6S_UW			
	the obtained results of the experiment	K_U15				
S2	Student is able to explain and justify making choices	K_U04	P6S_UW			
	regarding solutions based on a spatial database.	K_U15				
	SOCIAL COMPETENCES					

SC1	Student is prepared to cooperate with a engineer of geodesy	K_K11	P6S_KK
	and is aware of the social role of an engineer		

3. TEACHING METHODS

A. Traditional methods used ***

Multimedia lectures, laboratory exercises

B. Distance learning methods used ***

Synchron	ous 1	metl	hod	

Remote lectures in the form of a videoconference, remote discussion

Asynchronous method

4. METHODS OF EXAMINATION

Colloquium; presentation

5. SCOPE

Lectures	Tasks of geodesy and geoinformation. Map issues: map definition, coordinate
	systems, map scale. Units of length, area, and angle. Measurement accuracy.
	Altitude coordinate system. Leveling: absolute height, relative height, height
	difference, leveling methods. Contour map. GPS (Global Positioning System).
	Digital maps. Geographic Information System. Basic functions and operation of
	GIS programs. Database structure. Data management and transformation of
	spatial data. Data analysis and visualization. Examples of GIS applications.
Laboratories	

6. METHODS OF VERIFICATION OF LEARNING OUTCOMES

LEADNING	Form of assessment					
LEARNING OUTCOME	Oral examination	Written exam	Colloquium	Project	Presentation	
K1			X		X	
K2			X		X	
S1			X		X	
S2			X		X	
SC1			X		X	

7. LITERATURE

Basic literature	1. Łyszkowicz A., Łyszkowicz S., 2010. Surveying. Preskrypt. Oficyna Wydawnicza
	Politechnika Warszawska
	2. Olaya V. 2018. Introduction to GIS. https://volaya.github.io/gis-
	book/en/gisbook.pdf
Supplementary	1. Schofield W., Breach M. Engineering Surveying. Elsevier, 2007
literature	2. Huisman O., de By R.A. 2009. Principles of GIS.
	https://webapps.itc.utwente.nl/librarywww/papers_2009/general/principlesgis.pdf

8. TOTAL STUDENT WORKLOAD REQUIRED TO ACHIEVE EXPECTED LEARNING OUTCOMES EXPRESSED IN TIME AND ECTS CREDITS

S	Student workload— number of hours	
Classes conducted under a	Participation in classes indicated in point 1B	30
direct supervision of an academic teacher or other persons responsible for classes	Supervision hours	10
	Preparation for classes	40
Student's own work	Reading assignments	50
	Other (preparation for exams, tests, carrying out a project etc)	50
Total student workload	180	
	6	