Course code:

Plan position:

ition:

A. INFORMATION ABOUT THE COURSE

.....

B. Basic information

Name of course	Basics of molecular thermodynamics
Field of studies	Chemical Technology
Level of studies	First degree
Profile of studies	General academic
Form of studies	Stationary
Specialty	 Chemical process technology Bioengineering Chemistry and technology of cosmetics
Unit responsible for the field of studies	Faculty of Chemical Technology and Engineering
Name and academic degree of teacher(s)	Prof. Adam Gadomski, Dr Jacek Siódmiak, Dr Natalia Kruszewska
Introductory courses	Fundamentals of Physics
Introductory requirements	Basics of thermodynamics from the course of physics, knowledge of differential and integral calculus

C. Semester/week schedule of classes

Semester	Lectures (W)	Auditorium classes	Laboratory classes	Project classes	Seminar	Field classes	Number of ECTS points
		(Ć)	(L)	(P)	(S)	(T)	
summer	30	15					5

2. LEARNING OUTCOME

No.	Learning outcomes description	The reference to the learning outcomes of specific field of study	The reference to the learning outcomes for the area
	KNOWLEDGE		
W1	The student knows the basic laws of thermodynamics and	K_W02	P6S_WG
	should be able to explain these phenomena on the basis of		
	phenomenological thermodynamics and statistical physics.		
	SKILLS		
U1	He works individually and in a team.	K_U02	P6S_UO
			P6S_UK
U2	Can apply molecular thermodynamics principles and	K_U09	P6S_UW
	examine thermodynamics from a microscopic point of		
	view. Student should be able to describe thermodynamic		
	processes using equations. Is able to calculate all the		
	thermodynamic functions in terms of molecular properties		
	and apply them to chemical kinetics.		

SOCIAL COMPETENCES				
K1	He understands the need for training and improving his	K_K01	P6S_KK	
	competences professional.			

3. TEACHING METHODS

A. Traditional methods used

Multimedia lectures. Classes performed by students under supervision of academic staff.

4. METHODS OF EXAMINATION

Lectures - written exam, classes - submit reports.

5. SCOPE

	·
Lectures	Thermodynamic system and state parameters: intensive and extensive state
	parameters, the Zero Principle of Thermodynamics, concepts of heat and work
	and their relation to energy, the basis of balancing.
	Thermodynamic factors and state equation: perfect gas, perfect and semi-perfect
	gas, real gas equation.
	Specific heat: specific heat of perfect gases, thermal capacity, temperature
	dependence of specific heat and average specific heat.
	First Principle of Thermodynamics: energy conservation principle, internal energy, enthalpy.
	First Principle of Thermodynamics for closed and open systems, internal energy
	and enthalpy as a function of state.
	Thermodynamic transformations; characteristic transformations of ideal and
	semi-ideal gases, reversible and irreversible transformations.
	Thermodynamic circuits: the concept of circulation, types of circuits, energy
	efficiency of circulation.
	Second Principle of Thermodynamics: formulation of the second principle of
	thermodynamics and the concept of entropy, reversible Carnot cycle,
	thermodynamic temperature scale.
Classes	The equation of perfect and semi-perfect gas, the equation of real gas.
	First Principle of Thermodynamics: energy conservation principle, internal
	energy, enthalpy, first principle of thermodynamics for closed and open systems,
	internal energy and enthalpy as functions of state.
	Thermodynamic process; basic transformations of perfect and semi-perfect gases,
	reversible and irreversible processes.
	Thermodynamic cycles and the Second Principle of Thermodynamics: energy
	efficiency, reversible Carnot cycle.

6. METHODS OF VERIFICATION OF LEARNING OUTCOMES

LEARNING	Form of assessment					
OUTCOME	Oral examination	Written exam	Colloquium	Project	Presentation	Reports
W1		Х	Х			
U1			Х		Х	
U2			Х			
K1		Х	Х			

7. LITERATURE

Basic literature	1. S.R. de Groot, P. Mazur, Non-equilibrium Thermodynamics, Dover, New York,
	1984.
	2. P. Atkins, J. de Paula, Physical Chemistry, Oxford University Press, Oxford, United
	Kingdom, 2014.
	3. A.W. Adamson, A.P. Gast, Physical Chemistry of Surface, Wiley-Interscience,
	New York, 1997.
	4. J. E. Verwey, J. T. G. Overbeek, Theory of The Stability of Lyophobic Colloids,
	Elsevier, Amsterdam, 1948.
	5. P. Flory, Principles of Polymer Chemistry; Cornell University Press: Ithaca, NY,
	USA, 1953.
Supplementary	1. J.S. Rowlinson, B. Widom, Molecular Theory of Capillarity, Clarendon Press,
literature	London, 1982.
	2. J. Israelashvili, Intermolecular and Surface Forces, Academic Press, London 1992.
	3. J. D. Ferry, Viscoelastic Properties of Polymers, Wiley & Sons, New York, 1980.
	4. Online openstax textbooks: openstax.org

8. TOTAL STUDENT WORKLOAD REQUIRED TO ACHIEVE EXPECTED LEARNING OUTCOMES EXPRESSED IN TIME AND ECTS CREDITS

S	Student workload– number of hours	
Classes conducted under a	Participation in classes indicated in point 1B	45
direct supervision of an academic teacher or other persons responsible for classes	Supervision hours	15
	Preparation for classes	20
Student's own work	Reading assignments	25
	Other (preparation for exams, tests, carrying out a project etc)	20
Total student workload	125	
	5	