Course code: 15-WZR-EMS-FP1-SP5	Plan position:	
---------------------------------	----------------	--

A. INFORMATION ABOUT THE COURSE

B. Basic information

Name of course	FINAL PROJECT
Field of studies	INDUSTRIAL DESIGN
Level of studies	FIRST CYCLE
Profile of studies	PRACTICAL
Form of studies	FULL-TIME STUDIES
Specialty	
Unit responsible for the field of studies	FACULTY OF DESIGN
Name and academic degree of teacher(s)	Dr. Desy Teja Gumilar Dr. Szymon Saliński
Introductory courses	-
Introductory requirements	Basic knowledge related to design in the area of Industrial Design and directions of technological development.

C. Semester/week schedule of classes

Semester	Lectures (W)	Auditorium classes	Laboratory classes	Project classes	Seminar	Field classes	Number of ECTS points
		(Ć)	(L)	(P)	(S)	(T)	
Winter			30	90			11

2. LEARNING OUTCOME

No.	Learning outcomes description	The reference to the learning outcomes of	The reference to the learning outcomes for
		specific field of study	the area
	KNOWLEDGE		
W1	Student has advanced and in-depth knowledge related to design in the area of Industrial Design and related disciplines: Interior, Visual Communication, Exhibition and Urban Design.	K_W01	P6S_WG
W2	Student to an advanced degree knows the general range of issues related to applied technologies and directions of technology development in Industrial Design.	K_W06	P6S_WG
W3	Student knows the relationship between the design solution concept and its implementation in terms of basic technologies.	K_W09	P6S_WG
W4	Student has elementary knowledge of the construction, function, operation and applications of basic instruments and computer systems.	K_W12	P6S_WG
	SKILLS		

U1	Student has the ability to make independent decisions about the method of project implementation and is able to choose the right technique for the communication and implementation of the project task.	K_U05	P6S_UW
U2	Student is able to respond by design to the user's needs, considerations of function, material and technology, and to plan and carry out an evaluation of the basic properties of engineering materials.	K_U09	P6S_UW
U3	Students can communicate using specialized terminology related to Industrial Design.	K_U011	P6S_UK
	SOCIAL COMPETENCES		
K1	has acquired the ability to critically argue the analysis of a design solution. Student is able to communicate effectively when working in a team on collaborative design projects, and has the ability to negotiate and argue his/her's own design decisions.	K_K02	P6S_KO P6S_KK
K2	Student has the ability of self-assessment, constructive criticism of his own and others' actions. Demonstrates reflection on ethical and social aspects related to his/her own creative work. Knows and understands the basic concepts and principles of industrial property protection and copyright law	K_K04	P6S_KR P6S_KK

3. TEACHING METHODS

A. Traditional methods used ***

Consultation, discussion, presentation of results

B. Distance learning methods used ***

Synchronous method (classes conducted in a way that ensures direct interaction between the student and the teacher in real time, enabling immediate flow of information, the method can be used only if it is provided for in the study plan for a given cycle of education):

e.g. remote lecture in the form of videoconference, remote discussion, etc.

Asynchronous method used as an auxiliary (a method that does not ensure direct interaction between the student and the teacher in real time, used only as an auxiliary / complementary method):

e.g. online educational videos, online multimedia presentations, etc.

4. METHODS OF EXAMINATION

Preparation of the writing and design part of the engineering thesis

5. SCOPE

Laboratorium	Departion and submission of the diplome thesis and preparation for the diplome			
Laboratorium	Preparation and submission of the diploma thesis and preparation for the diploma			
	exam consists of the student's preparation of a written engineering thesis, and the			
	development of a diploma project with the production of a prototype or imitation			
	model - depending on the chosen topic. The purpose of the diploma thesis is to			
	prepare a theoretical study of a problem related to the diploma project, or a			
	theoretical issue related to the chosen diploma specialty and develop a design			
	project.			
	Aids used: journals, the Internet, individually (depending on the adopted topic)			
	developed bibliography. Criteria for evaluation of the thesis: originality of			

	concept, writing within the specified time limit and preparation of the thesis					
	project in the field of Industrial Design.					
Project	Preliminary requirements for students: - ability to analyze the problem posed -					
	general knowledge of the selected issue. The choice of the topic as well as the					
	determination of the scope of the diploma thesis is always individual.					
	The sequence of proceedings: establishing a topic, developing a program,					
	developing assumptions, writing a paper within the established scope.					
	Formation of the foundations of the scientific workshop. Acquisition of skills in					
	formulating, solving design problems. Implementation of the subsequent stag					
	of the thesis preparation, adequately to the suggestions and requirements acc					
	and verified by the thesis supervisor. An important element here is the need for a					
	critical eye and detailed documentation of developed concepts, prototypes. The					
	role of the thesis supervisor is to point out the possibilities and verify the results,					
	first of all, in the very methodology of preparing the thesis, from the development					
	of source materials, to the implementation of design and research tasks, and					
	finally the elements of the thesis itself.					

6. METHODS OF VERIFICATION OF LEARNING OUTCOMES

LEARNING	Form of assessment					
OUTCOME	Oral examination	Written exam	Colloquium	Project	Pass	Presentation
W1 - W4				X		X
U1 - U3				X		X
K1 - K2				X		Х

7. LITERATURE

Basic literature	Individually selected depending on the problems the student faces when undertaking a
	design topic, often consulted with specialists in other fields of technology and
	materials science.
Supplementary	Journals, internet, individually developed bibliography (depending on the chosen
literature	topic).

8. TOTAL STUDENT WORKLOAD REQUIRED TO ACHIEVE EXPECTED LEARNING OUTCOMES EXPRESSED IN TIME AND ECTS CREDITS

S	Student workload— number of hours	
Classes conducted under a	Participation in classes indicated in point 1B	120
direct supervision of an academic teacher or other persons responsible for classes	Supervision hours	50
	Preparation for classes	50
Student's own work	Reading assignments	50
	Other (preparation for exams, tests, carrying out a project etc)	50
Total student workload	320	
	11	