Code

1. INFORMATION ABOUT THE COURSE

A. Basic information

Name of course	Algorithms and Data Structures
Study level	First degree
Unit running the study programme	Faculty of Telecommunication, Computer Science and Electrical Engineering
Study programme	Computer science
Speciality	
Name of teacher (s) and his academic degree	Mścisław Śrutek, PhD
Introductory courses	none
Prerequisites	Basic knowledge of computers

B. Semester/week schedule of classes

Semester	Lectures	Classes	Laboratories	Project	Seminars	Field exercises	ECTS
winter or			30				2
summer							Z

2. EFFECTS OF EDUCATION (acc. to National Qualifications Framework)

Knowledge	on successful completion of the course student is supposed to describe basic sorting and searching algorithms. Be able to identify an algorithm design paradigm based on recursive subproblems: divide and conquer.
Skills	on successful completion of the course student is supposed to: construct algorithms using basic algorithmic techniques and make analysis of their complexity, to assess the suitability of methods and tools for solving simple engineering problems and select and apply appropriate technologies
Competences	on successful completion of the course student is supposed to be able to act and think creatively

3. TEACHING METHODS

multimedia lecture

4. METHODS OF EXAMINATION

written exam at the end of lecture

5. **SCOPE**

Lectures	- Basic data structures, methods of storing and searching them.
	- Basic principles of writing and analyzing algorithms - correctness,
	computational and memory complexity of an algorithm,
	- Methods of designing efficient algorithms - divide and conquer method,
	greedy algorithms, dynamic programming, search with recursion and the
	method of division and limitation.
	- Sorting - sorting by insertion, selection, exhange, quick sort, complexity of
	the sorting problem.
	- Selection - Hoare's algorithm , magic fives algorithm
	- Search and dictionaries - linear and binary search, binary search trees,
	balanced search trees, hashing, B-trees
	- Travelling salesman problem, Euler and Hamiltonian paths, Dijkstra's
	algorithm.

- Graph algorithms - computer representations of graphs, graph search
methods and their applications - shortest paths, consistency, biconsistency,
strong consistency, topological sorting, path problems, minimal spanning
tree, most numerous associations in bipartite graphs.
- Textual data structures - suffix arrays, suffix trees

6. LITERATURE

Basic literature	1.	Aditya Bhargava, Grokking Algorithms: An Illustrated Guide for Pro- grammers and Other Curious People, Manning Publications; Edycja An- notated, 2016
	2.	Narasimha Karumanchi, Data Structures and Algorithms Made Eas, Careermonk Publications; 2016,
	3.	Robert Sedgewick, Algorithms, Addison-Wesley Professional, 2011
Supplementary	1.	Steven S Skiena, The Algorithm Design Manual, Springer, 2020
literature	2.	Robert Lafore, Data Structures and Algorithms in Java, Sams Publishing,
		2002