Code

1. INFORMATION ABOUT THE COURSE

A. Basic information

Name of course	Basics of Operating Systems
Study level	First degree
Unit running the study programme	Faculty of Telecommunication, Computer Science and Electrical Engineering
Study programme	Data communications
Speciality	
Name of teacher (s) and his academic degree	Beata Marciniak, PhD
Introductory courses	Basis of algorithms
Prerequisites	

B. Semester/week schedule of classes

Semester	Lectures	Classes	Laboratories	Project	Seminars	Field exercises	ECTS
winter	15		15				3

2. EFFECTS OF EDUCATION (acc. to National Qualifications Framework)

Knowledge	On successful completion of the course student is supposed to: define the basic structure of the operating system, describe the basic functions and features of operating systems, identify one-purpose and multi-tasking systems, as well as single-threaded and multithreaded, will be able to define concurrent processes and characterize the principle of expropriation of processes, will be able to explain the memory management and its organization and addressing. Able to recognize the memory allocation algorithms. Will be able to find blocks of management input / output devices and describe the character and block devices and access methods
Skills	on successful completion of the course student is supposed to: analyse the performance multithreaded operating system, will be able to resolve issues pertaining to the concurrency of processes will be able to formulate a graph of the processes and formulate a solution for resource allocation graph
Competences	on successful completion of the course student is supposed to: actively participate in the team working on developing a new operating system will be able to independently develop new algorithms for process control as well as collaborate with a team developing new methods of operating systems

3. TEACHING METHODS

multimedia lecture, multimedia laboratory

4. METHODS OF EXAMINATION

written exam, project on the end of lab

5. **SCOPE**

Lectures	Introduction, history of the development of operating systems, the basic
	structure of the operating system. Tasks and properties of operating systems.
	The structures of computer systems and operating systems. Operating
	system as the users work environment. Character and graphical user
	interface. Single and multi-purpose systems. Multiuser systems. Distributed
	systems. A layered model of the operating system. The kernel of the system:

	structure and function. File management, file system organization.
Laboratories	Implementation of the various mechanisms of memory access, the implementation of various projects. Implementation of algorithms for synchronization of threads. In some implementations will be used bash, most common unix/linux shell. Learning to write scripts using the bash shell and using scripts to manage the operating system.

6. LITERATURE

Basic literature	1. Silberschatz A., Galvin P. B., Gagne G., 2009, Operating
	systems concepts. Eight edition. John Wiley&Sons,
	2. Stallings W., 2018, Operating Systems, Internals and Design
	Principles Ninth Edition Global Edition, Pearson
	3. W. Richard Stevens, Bill Fenner, Andrew M. Rudoff, 2003,
	UNIX Network Programming. 2. Interprocess
	Communications, Third Edition, Addison-Wesley Professional
	Computing,
	4. Tanenbaum A.S, Bos H., 2015, Modern operating systems, 4 th
	edition, Pearson.
Supplementary	Steve Parker, 2011, Shell Scripting, Expert Recipes for Linux, Bash and
literature	more, Wrox
	Richard Blum, Christine Bresnahan, 2011, Linux Command Line and Shell
	Scripting Bible, 2nd Edition, Wiley