Code

1. INFORMATION ABOUT THE COURSE

A. Basic information

Name of course	Smart Grid
Study level	First degree
Unit running the study programme	Faculty of Telecommunication, Computer Science and Electrical Engineering
Study programme	Electrical Engineering
Speciality	
Name of teacher (s) and his academic degree	Piotr Kiedrowski, PhD
Introductory courses	Introduction to Electrical Engineering
Prerequisites	No prerequisites

B. Semester/week schedule of classes

Semester	Lectures	Classes	Laboratories	Project	Seminars	Field exercises	ECTS
winter or summer	15		15				8

2. EFFECTS OF EDUCATION (acc. to National Qualifications Framework)

Knowledge	on successful completion of the course student is supposed to know the transformational impacts of the smart grid on the industry
Skills	on successful completion of the course student is supposed to be able to configure and reconfigure Smart Grid, interpret alarms and detect faults
Competences	on successful completion of the course student is supposed to control Layer Infrastructure, Software-Define Networks, to integrate legacy systems and is familiar with Smart Grid Applications

3. TEACHING METHODS

multimedia lecture, lab, method of cases

4. METHODS OF EXAMINATION

written exam once per semester, oral presentation, short paper at the beginning of every lab

5. **SCOPE**

Lectures	Introduction to the smart grid, including objectives and functions, views of the smart grid within the industry, and design criteria. Overview of the electric grid, covering traditional grid components and new grid technologies, such as energy storage, distributed generation, and micro-grids. Smart grid control elements required to monitor and control the grid, such as smart meters, sensors, and phasor measurement units. Communications and interoperability, including communications requirements, reliability, security, and technologies, from PLC to wireless. Smart grid operations, covering control and management functions, operations architectures, and information models. Smart grid control layer, including real-time functions such as voltage and frequency monitoring and control, fault detection and location, and security and policy management; control algorithms such as management of voltage, energy storage, and distributed generation; and integration of legacy systems.
Laboratories	SCADA (supervisory control and data acquisition)

Functions and function architecture
Performance Management
Accounting Management
Configuration Management
Fault Management
Security Management
Common Information Model (CIM)
Process architecture
Fault Location Service Provisioning
Smart Grid Applications Layer
Smart Grid Control Layer

6. LITERATURE

Basic literature	Bush S.F.: Smart Grid: Communication-Enabled Intelligence for the Electric Power Grid. Wiley-IEEE Press 2014, 570 pages Short T. A: Electric Power Distribution Handbook. Second Edition. CRC Press Inc. 2014, 898 pages
Supplementary literature	Kiedrowski P.: Toward More Efficient and More Secure Last Mile Smart Metering and Smart Lighting Communication Systems with the Use of PLC/RF Hybrid Technology, International Journal of Distributed Sensor Networks, Vol. 2015, Article ID 675926, pp. 1-9, 2015, http://dx.doi.org/10.1155/2015/675926 Kiedrowski P.: Errors Nature of the Narrowband PLC Transmission in Smart Lighting LV Network, International Journal of Distributed Sensor Networks, Vol. 2016, Article ID 9592679, pp. 1-9, 2015, http://dx.doi.org/10.1155/2016/9592679