Code

1. INFORMATION ABOUT THE COURSE

A. Basic information

Name of course	Digital Circuits
Study level	First degree
Unit running the study programme	Faculty of Telecommunication, Computer Science and Electrical Engineering
Study programme	Electronics and Telecommunications
Speciality	
Name of teacher (s) and his academic degree	Damian Ledziński, Ph.D., Piotr Grad Ph.D.
Introductory courses	none
Prerequisites	no prerequisites

B. Semester/week schedule of classes

Semester	Lectures	Classes	Laboratories	Project	Seminars	Field exercises	ECTS
winter or			30				1
summer							t

2. EFFECTS OF EDUCATION (acc. to National Qualifications Framework)

Knowledge	on successful completion of the course student is supposed to define and
Tritowicage	
	solve any specific problem from digital circuits area
Skille	on successful completion of the course student is supposed to analyse any
Skiiis	on successiti completion of the course student is supposed to analyse any
	specific problem from digital area, formulate any problem on abstractive level,
	solve defined problem and implement it in EPGA technology
Competences	on successful completion of the course student is supposed to be able to
e emperencee	
	according with the other students to salve provide digital problems
	Cooperate with the other students to solve specific digital problems.

3. TEACHING METHODS

laboratory

4. METHODS OF EXAMINATION

projects during laboratories lecture

5. **SCOPE**

Lectures	
Laboratories	Introduction to digital circuits. Some example. Axioms and rules of Boolean
	algebra. Boolean functions. True tables. Functionally complete systems.
	Specification of logical functions. Combinational circuits. Formalization of the
	description. Basic gates. NAND and NOR gates. XOR gates. Algebraic
	minimization of logical expressions. Fundamentals of mnemonic methods of

minimizing logical functions. Minimization of logical functions using Karnaugh
maps. Don't care values. Sum of Products normal form. Product of Sums
normal form. Quine and McCluskeys method of minimization. Static and
dynamic hazards. Combinational circuits utilizing multiplexers. Combinational
circuits utilizing decoders and demultiplexers. Combinational circuits utilizing
read only memory. Design exercises. Synchronous circuits. General
introduction. Problem formulation. Automaton state. Graphs. State transition
and output table. State transition and output table. Partial equivalence of
Moore and Mealy automatons. Coding. D, T, JK, RS flip flops. Flip-flop
excitation tables. Synchronous automaton realization. Equivalence of
complete (fully specified) automaton states. Compatibility of incomplete
Laboratories
(partially specified) automaton states. Formalization of the minimization
algorithms. Realization of a minimal automaton using D, T, JK, RS type flip-
flops. Design exercises. Asynchronous circuits. Fundamentals of
asynchronous circuit design. Time plots. Assigning of states. Primary state
transition and output table. Minimization of the number of states. Races.
State coding. Cyclic transitions. State coding using hypercubes. Coded state
transition and output table and the realization of the automaton. Method of
minimizing asynchronous automatons. An example of the utilization of the
alternative method of minimizing asynchronous automatons. Asynchronous
circuit design using state graphs. Problem formulation. Creation of the state
graph. Minimization of the number of states and coding. Realization of an
automaton. Design exercises.

6. LITERATURE

Basic literature	Sasao T., 1999. Switching Theory for Logic Synthesis. Springer
Supplementary literature	Hassoun S., Sasao T., 2001. Logic Synthesis and Verifications. Springer.